Enhancing HTN Planning As Satisfiability

Amol D. Mali
Dept. of Electr. Engg. & Computer Science,
University of Wisconsin, Milwaukee, WI 53211, USA.
mali@miller.cs.uwm.edu, Phone: 414 - 906 - 8942
Fax: 414 - 229 - 2769

Abstract

(Appears in the proceedings of international conference on artificial intelligence and soft computing (ASC), Canada, July 2000, pp. 325-333.)

Classical planning is the problem of synthesizing a sequence of actions to reach a goal state starting from an initial state. Hierarchical task networks (HTNs) have been used as a guidance for solving planning problems where tasks are decomposed into subtasks. Recently, both action-based planning as well as HTN-based planning have been cast as satisfiability (SAT). The performance of planning as SAT has been hitherto remarkably improved by using a variety of techniques. However none of these techniques is sensitive to the structure of domain specific knowledge. We develop and evaluate three heuristics that are sensitive to the structure of the given domain knowledge (in the form of HTNs), by generating propositional encodings of HTN planning based on them and solving them. The resulting encodings are smaller and easier to solve on most of the problems. Given that the current SAT solvers can handle a limited number of variables (10^4) and clauses (10^6) in real time, such heuristics sensitive to the structure of the domain knowledge are important.

Keywords: Planning, Hierarchical Task Networks, Satisfiability, Propositional Reasoning.

1 Introduction

Classical planning is the problem of synthesizing an executable sequence of actions to reach a partially specified goal state starting from a completely specified initial state, assuming deterministic actions, perfect perception and static and perfectly observable environment. An action in STRIPS representation has pre-conditions which are atoms (positive literals) and effects which are atoms (positive and negative literals), classified into add effects and delete effects. For example, to execute the action load($A, R_1, London$) (loading package A into rocket R_1 at London), the pre-conditions $at(A, London)$, has_fuel(R_1) and $at(R_1, London)$ must be true and after this action is executed, $in(A, R_1)$ will become true (add effect) and $at(A, London)$ will become false (delete effect), assuming that the action is defined in such a way that a package that is loaded is no longer in the city.

The traditional classical planners (also known as “split & prune” planners) did refinement search [5], starting with an empty plan and refining it by adding more constraints like actions and orderings between these. Based on whether the search is conducted in the space of world states or a space of partial plans (sets of constraints about orderings and causal sources of truths of pre-conditions of actions), the planners are broadly classified as “state space” planners and “partial order” planners. More encouraging results were obtained by casting planning as propositional satisfiability [8]. The general idea of this paradigm is to construct a disjunctive structure that contains all action sequences of length k, some of which may be plans. The problem of checking if there exists a plan is posed as satisfiability testing. The SAT instance (encoding of the planning problem) contains constraints that must hold for any specific sequence to be a solution. The encoding is thus specified in such a way that it has a model if and only if there exists a provably correct plan of k steps. If no model is found, a new encoding is generated by increasing the value of k.

In many domains, human experts can share their knowledge with the planners by specifying decomposition strategies for complex tasks, in the form of schemata that contain constraints that must be satisfied for the tasks to be fulfilled. Planners that use such task reduction schemata are known as “hierarchical task network planners” [2][18][3]. For example, the task $Transport(A, London, Paris, R_1)$ of transporting the package A from $London$ to $Paris$ with rocket R_1 may be decomposed by specifying the set of constraints (reduction schema) \{$p_1 : load(A, R_1, London), p_2 : unload(A, R_1, Paris), p_3 : fly(R_1, London, Paris), p_1 \prec p_3$\}, where p_1, p_2 and p_3 are steps whose action bindings are specified. Note
that some constraints necessary for the fulfillment of a task may not be specified in the schemas, e.g. $p_3 \lor p_2$ here. An HTN planning problem is solved by decomposing multiple tasks and resolving interactions between the primitive (executable) actions from these tasks till a goal achieving executable action sequence is found.

HTN planners have been used in several fieldsed applications including beer factory production line scheduling and military operations planning [18]. HTN planning can be viewed as an “augmentation” of action-based planning, where the task reduction schemas provide an implicit grammar of legal (“desired”) solutions or user intent [6]. User intent (certain preferences about plan generation) is captured in the reduction schema, in the form of constraints, so that only those plans that respect these constraints are generated. Thus plans generated by HTN planners, in addition to being goal achieving, also have a parse in terms of the task reduction schemas. HTNs are used in planning with the motivation of reducing the combinatorics in action-based planning and/or modeling the domain in a particular style of decomposition and plan generation.

Hitherto, the performance of planning as satisfiability has been improved either using a smaller encoding like state space (based on state space planning) [4] and/or propagating domain specific knowledge [12] and/or using logical inference like unit propagation (simplifying $(\alpha \land (\alpha \Rightarrow \beta))$ to $(\alpha \lor \beta)$) [10] (especially using unit clauses in initial and goal states) and/or using different action representations (e.g. splitting move(A, B, C) action as $(\text{move}_{\text{arg1} \land \text{move}_{\text{arg2}} B \land \text{move}_{\text{arg2} \lor C})$) or using different frame axioms for explaining the change in the world state (explanatory rather than classical, see sect. 2.2) [4] or eliminating actions as in the state-based encodings [7] and/or using better SAT solvers like satz-rand [10] that do not get stuck in undesirable regions of search space. All these approaches, though remarkable advances, are not sensitive to the structure of the domain specific knowledge. Our work is about efficiently representing the domain knowledge given in the form of HTNs, exploiting their structure, so that the resulting encodings of HTN planning can be simplified to a greater extent, respecting the grammar of legal solutions. We propose and evaluate three heuristics to achieve such representations.

Encodings of action-based planning [7] disjunctively represent the potential step \rightarrow action bindings. For example, the clauses $((p_1 = o_1) \lor (p_1 = o_2) \lor (p_1 = o_3))$ and $((p_2 = o_1) \lor (p_2 = o_2) \lor (p_2 = o_3))$ compactly encode 9 action sequences, each containing 2 actions, where p_1, p_2 are steps and o_1, o_2 and o_3 are actions. Assuming that the task reduction schemas are not recursive, Mali [12] set up HTN planning encodings (we refer to these as HTN encodings for brevity) by bounding the number of such schemas required to solve a problem and constraining the action-based encodings (state space and causal) in [7], with the task reduction schemas. The HTN encodings contain, as a disjunction, both the potential non-primitive step \rightarrow non-primitive task bindings and the potential step \rightarrow action bindings. In their causal HTN encodings (sect. 2.4), the non-primitive step \rightarrow non-primitive task bindings, along with the actions that occur in the reduction schemas, are used to decide the disjunctive step \rightarrow action binding. Since a step is not bound to an action outside the task reduction schemas, one does not have to consider all ground actions in the disjunctive action binding of a step. Mali [12] propagate this smaller disjunctive binding to demonstrate a performance improvement over action-based encodings (that do not contain the constraints from HTNs). We report three heuristics for improving their strategy of using the task reduction schemas to decide the disjunctive step \rightarrow action binding, in polynomial time.

The heuristics are based on a purely quantitative analysis like the number of common pre-conditions and/or common add effects and/or common delete effects of primitive actions in different task reduction schemas. The task reduction schemas in most planning domains contain actions having some common pre-conditions and/or some common add effects and/or some common delete effects. For example, though the actions $\text{load}(A, R1, \text{London})$ and $\text{load}(A, R2, \text{London})$ load the same package into different rockets, they both have the common pre-condition $\text{at}(A, \text{London})$ and the common delete effect $\text{at}(A, \text{London})$. Different heuristics exploit different common features to reduce the domains of certain key variables (note that constraint propagation cannot achieve this kind of reduction) in the encodings of HTN planning and consequently, the domains of other variables shrink as well, when the reduction in the domains of the key variables (like the reduction in the number of potential action bindings (domain) of a step (variable)) is propagated (by additional reasoning which heuristics do not carry out, there is another code for doing it). Thus the encoding sizes go down, both because of the heuristics and the constraint propagation that succeeds them. The heuristics do not use the initial and goal states of the problem, generating a problem independent output for the given task reduction schemas. The heuristics are however dependent on the structure (task reduction schemas) in which the domain knowledge is specified.
This paper makes the following contributions.

- We develop three polynomial time domain independent pre-processing heuristics to generate the disjunctive $\text{step} \rightarrow \text{action}$ binding in the HTN encodings. The heuristics reduce the domains of some key variables, increasing the possibilities of simplification by propagation of this domain reduction. The heuristics are soundness and completeness preserving.

- The heuristics are sensitive to the structure of the domain knowledge. Since the heuristics do not use the initial and goal state of a problem, they generate a problem independent result for given HTNs.

- An empirical evaluation of the heuristics which shows that the encodings generated using each of them are indeed smaller and faster to solve on most of the problems and that for each of the solved problems, there was at least one heuristic that yielded an encoding that was the fastest to solve.

Since current SAT solvers handle a limited number of variables (10^4) and clauses (10^6) in real time, it is important to find techniques to simplify the encodings so that their sizes are within these limits. Thus heuristics exploiting the structure in the domain knowledge are important.

The paper is organized as follows. In section 2, we explain the basics of action-based encodings from [7] and the causal HTN encoding from [12]. In section 3, we describe 3 heuristics for generating the disjunctive $\text{step} \rightarrow \text{action}$ binding. In section 4, we discuss the empirical results. We briefly survey related constraint-based approaches to plan synthesis in section 5. The conclusions are reported in section 6.

2 Background

In this section, we provide the necessary basics of the action-based encodings in [7] and the causal HTN encoding of Mali [12].

2.1 Notation

p_i denotes a plan step. a_j denotes a STRIPS style ground action. ϕ denotes the null action (no-op) which has no pre-conditions and no effects. ϕ is used to generate plans requiring fewer actions or task reduction schemas than the chosen bound. $(p_i = a_j)$ denotes the step \rightarrow action binding.

$p_i \rightarrow p_j$ denotes a causal link. $p_i \prec p_j$ denotes that p_i precedes p_j. N_i denotes a ground non-primitive task. s_i denotes a non-primitive step that is bound to a non-primitive task. $(s_i = N_j)$ denotes the non-primitive step \rightarrow non-primitive task binding. r_{ij} denotes jth reduction schema of N_i. A reduction schema may contain actions, non-primitive tasks, causal links and orderings between these, as in [3]. When we refer to task, we always mean non-primitive task. If a step is bound to a task, it is always a non-primitive step.

2.2 Action-based state space encoding

To prove that a sequence of actions is a plan, state space methods essentially try to progress the initial state I (or regress the goal state G) through the sequence to see if the goal state (or initial state) is reached. The following constraints are represented in the explanatory frame axiom-based state space encoding in [7].

1. The initial state is true at time 0 and the goal must be true at time k. 2. Conflicting actions (one action deleting the pre-condition or effect of another or needing negation of pre-condition of another) cannot occur at the same time step. 3. The “explanatory frame axioms” state that if the truth of a fluent changes over the interval $[t, t+1]$, some action changing that must occur at t. 4. If an action occurs at time t, its pre-conditions are true at t and effects are true at $(t + 1)$.

2.3 Action-based causal encoding

The plan space (causal) encodings (based on partial order planning) are based on the ideas of proving the correctness of a plan using causal reasoning about the establishment and preservation of goals and the pre-conditions of individual actions. The following constraints are represented in the causal encoding in [7].

1. Each step in the encoding is bound to a single action or the no-op. This is stated as a disjunctive $\text{step} \rightarrow \text{action}$ binding and mutual exclusion constraints. 2. The conditions true or false in the initial state are the effects of step I and the conditions in the goal state are the preconditions of step F. I has no pre-conditions and it is always the first step in a plan and F has no effects and it is always the last step in a plan. 3. A step inherits the pre-conditions and effects of its action binding. 4. The only way a step can add, delete or need a condition is if the condition is added, deleted or needed (respectively) by its action binding. 5. Each precondition of each step must have a causal link supporting it. 6. The contributor step of a causal link precedes the consumer step, and if a step is bound to an action that deletes the condition supported by the causal link (threat), that step either precedes the contributor or succeeds the consumer. 7. The \prec relation is irreflexive, asymmetric and transitive.
2.4 Basics of HTN Encodings

The propositional encodings for HTN planning [12] are developed by constraining the action-based encodings in [7], such that their satisfying models also conform to the grammar of solutions of interest to a user, specified by the task reduction schemas. Since most implemented HTN planners [18] share a lot of structure of the partial order planners, they constrain the causal encoding in [7] to develop the encodings for HTN planning. We use their top-down causal HTN encoding in the further discussion and empirical evaluation. The key constraints that appear in this encoding are described below. The complete set of constraints is given in [13].

1. If a step is bound to a non-null task, it adds the add effects of the task. 2. If a step is bound to a task, all constraints in some reduction of that task must be satisfied. 3. A step is bound to a single task. This is stated as a disjunction of the potential step \(\rightarrow \) task bindings and pairs of mutually exclusive bindings. 4. Every goal condition is added by some task.

We reproduce some notation and preliminaries from [13] next. \(M_i \) denotes the maximum number of actions in reduction schema of the task \(N_i \) and \(M = \max(\{M_i \mid i \in [1, m]\}) \), \(m \) being the number of tasks given. \(K \) denotes the number of non-primitive steps used in the HTN encoding. The total number of steps in an HTN encoding are \(T = M.K \), since the reduction schemas are not recursive and the steps are not bound to actions outside the reduction schemas. This can be viewed as allocating \(M \) steps ranging from \(p(i-1).M \) to \(p(i.M-1) \) to each non-primitive step \(s_i \) (is computed automatically by examining the reduction schemas). The action bindings of the \(T \) steps are decided by the tasks chosen and the actions in the reduction schemas chosen to fulfill the tasks.

2.5 Disjunctive step \(\rightarrow \) action binding

Consider two tasks \(N_1 \) and \(N_2 \) such that \(N_1 \) is fulfilled by the reduction schema \(r_{11} \), which is \(\{o_1, o_2, o_1 \prec o_2, N_2\} \) and \(N_2 \) has two reduction schemas \(r_{21} \) and \(r_{22} \). Let \(r_{21} \) be \(\{o_3, o_4, o_5, o_3 \rightarrow o_4\} \) and \(r_{22} \) be \(\{o_5, o_1, o_5 \prec o_1\} \). The maximum number of actions (\(M \)) that occur in a reduction schema is \(3 \) (in \(r_{21} \)). If \(K = 2, T = 6 \). Let \(p_1, p_2 \) and \(p_3 \) be the steps allocated to \(s_1, s_1, p_4, p_5 \) and \(p_6 \) be the steps allocated to \(s_2 \). Since the action bindings of actions depend on the non-primitive step \(\rightarrow \) task bindings, \((s_2 = N_2) \Rightarrow (A \lor B) \), such that \((A \Rightarrow ((p_4 = o_5) \land (p_5 = o_4) \land (p_6 = o_2))) \) and \((B \Rightarrow ((p_4 = o_5) \land (p_5 = o_4) \land (p_6 = o_1))). \) Similarly, formulae can be written for the cases \((s_1 = N_1) \), \((s_2 = N_2), (s_1 = N_1), (s_1 = \phi) \) and \((s_2 = \phi) \).

Mali [12] bind the steps to actions, based on the order in which the actions appear in the data structure containing a reduction schema, such that steps with lower indices are bound to actions that occur earlier in the data structure. Thus if the actions from the reduction schema \(r_{11} \) appear in the order \(o_1, o_2 \) in the data structure, they bind \(p_1 \) to \(o_1 \), \(p_2 \) to \(o_2 \) and \(p_3 \) to \(o_3 \) and state that the variable \((s_1 = N_1) \) implies a conjunction of these bindings. The actions that occur in the disjunctive step \(\rightarrow \) action binding for a step can be put together in a set. We denote the set of potential action bindings of a step \(p_i \) by \(S(p_i) \).

Assuming that the order in which the actions are written in the descriptions of the reduction schemas above are same as the order in which they appear in the data structure, the \(S(p_i) \)'s generated by the Mali [12] approach are \(\{o_1, o_3, o_5, \phi\} \) (for \(p_1 \) and \(p_4 \)), \(\{o_2, o_4, o_1, \phi\} \) (for \(p_2 \) and \(p_5 \)) and \(\{o_5, \phi\} \) (for \(p_6 \)), also shown in the regular representation in Fig. 1. Stated in terms of clauses, these are \(\{(p_1 = o_1) \lor (p_1 = o_3) \lor (p_1 = o_5) \lor (p_1 = \phi)\}, \{(p_4 = o_1) \lor (p_4 = o_2) \lor (p_4 = o_3) \lor (p_4 = o_5) \lor (p_4 = \phi)\}, \{(p_2 = o_1) \lor (p_2 = o_3) \lor (p_2 = o_4) \lor (p_2 = \phi)\}, \{(p_5 = o_1) \lor (p_5 = o_2) \lor (p_5 = o_4) \lor (p_5 = \phi)\} \) and so on.

An action-based causal encoding of \(k \) steps contains \(\text{O}(k^2 \mid U) \) causal link variables, since a causal link is generated for each of the \(\mid U \) pre-conditions in the domain, considering each of the \(k \) steps as a potential contributor and each of the remaining \((k-1) \) steps as a potential consumer. The encoding also contains \(\text{O}(k^2 \mid U) \) clauses for resolving threats, since each of the \(\text{O}(k^2 \mid U) \) potential causal links may be potentially threatened by any of the remaining \((k-2) \) steps. \(S(p_i) \) is very important because it can be used to decide whether \(p_i \) can add, delete or need a condition. If no element of \(S(p_i) \) adds or deletes or needs a condition, \(p_i \) will indeed never add or delete or need this condition respectively.

The causal link variable \(p_i \rightarrow p_j \) need not be generated if (i) \(S(p_i) \) does not contain any action.

![Figure 1: The potential action bindings of steps in causal HTN encoding](image-url)
that adds \(f \) or (ii) \(S(p_j) \) does not contain any action that needs \(f \). Similarly, the threat resolution clause
\[
(p_i \rightarrow p_j) \wedge \text{Dels}(p_i, f) \Rightarrow ((p_i \prec p_i) \vee (p_j \prec p_j)),
\]
need not be generated if (i) \(S(p_i) \) or \(S(p_j) \) show that
\(p_i \rightarrow p_j \) will always be false or (ii) no element of
\(S(p_i) \) deletes \(f \). Using \(S(p_i) \), one can not only reduce
the number of causal link variables and threat resolution
clauses, but also the number of variables like \(AddS(p_i, f) \), \(Needs(p_i, f) \) and \(DeleteS(p_i, f) \) and mutual exclusion clauses like \(\neg((p_i = o_j) \wedge (p_i = o_j)) \).
The asymptotic number of such exclusions is \(O(T \mid O^2) \),
\(O \) being the set of ground actions. Mali [12] have reported
empirical results showing reductions in the sizes and
solving times, yielded by this \(S(p_i) \) based reasoning.

3 Heuristics
The three heuristics we develop in this section are variants
of the strategy of computing \(S(p_i) \) of Mali [12].
Consider the example in Fig. 1. If the positions of
\(o_i, o_j \) and \(\phi \) (null) from \(r_{22} \) are changed as shown in the
alternative representation, for each \(p_i, i \in [1, 6], \)
\(S(p_j) \) in the new representation is a subset of \(S(p_i) \) in original representation.
For example, the disjunctive step-action binding for steps \(p_1, p_4 \) changes, that is,
\(((p_1 = o_1) \vee (p_1 = o_2) \vee (p_1 = \phi)) \), in the alternative
representation. The new representation will lead to a
provably smaller encoding than the original.
We have not changed the contents of the task reduction
schemas, while coming up with the new alternative.

We give below a generalized template for computing
\(S(p_i) \) and then describe the heuristics. \(S(p_{i+M}) \) is
same as \(S(p_i) \), as can also be seen from Fig. 1. Thus
to compute such sets for \(K \cdot M \) steps, it is enough to
compute these sets for the \(M \) steps \(p_1, \ldots, p_M \). \(R \)
denotes the sum of the number of reduction schemas of all
the given tasks. \(C(r_{ij}) \) denotes a copy of the set of actions
in reduction schema \(r_{ij} \). (we assume that there are
symbols to distinguish between multiple occurrences of
an action). Each \(S(p_i) \) contains the no-op \(\phi \). The
computation in the template terminates in \(O(MRh) \) time,
where \(h \) is the time required for applying the heuristic
on an iteration. At the time of termination, all \(C(r_{ij}) \) are empty.

1. For each step \(p_{ij}, i \in [1, M], S(p_i) = \{ \} \)
2. For each task \(N_j, j \in [1, m], \)
3. For each reduction schema \(r_{ij} \) of \(N_j, \)
Choose an action \(o_i \in C(r_{ij}) \) using
the chosen heuristic and do
\{ \(S(p_i) \leftarrow S(p_i) \cup \{ o_i \} \), \(\}
\(C(r_{ij}) \leftarrow (C(r_{ij}) - \{ o_i \}) \), Go to 3. \}

The complexities of applying the heuristics 1, 2 and
3 to generate \(S(p_i) \) for \(M \) steps are \(O((M Ra_1)^2) \),
\(O((M Ra_2)^2) \) and \(O((M Ra_3)^2) \) respectively, where \(a_1 \)
is the maximum of the individual sums of the number
of delete effects and add effects of individual actions,
\(a_2 \) is the maximum of the individual sums of the number
of delete effects and pre-conditions of individual actions
and \(a_3 \) is the maximum of the individual sums of the number
of delete effects, add effects and pre-conditions of individual actions.

Note that minimizing \(| S(p_i) | \) will not necessarily
lead to the smallest encoding, since the potential effects
and preconditions of steps decide the potential causal
links and threats. The orderings and causal links from
the reduction schemas contribute to the encoding size
as well. Computing the \(S(p_i) \) sets that will lead to
the smallest encoding is combinatorially hard (that is why
we propose a variety of heuristics below). We do not
claim that smaller encodings are always easier to solve.

The different heuristics below attempt to reduce the
numbers of different types of clauses and variables.
In the description that follows, \(A(S(p_i)) \) denotes the
union of the add effects of actions in current \(S(p_i) \),
\(D(S(p_i)) \) denotes the union of the delete effects of
actions in current \(S(p_i) \) and \(P(S(p_i)) \) denotes the union of
the preconditions of actions in current \(S(p_i) \). Note
that though the models of the encodings may differ
because the encodings have different variables and
clauses, the sets of all plans found by solving different
encodings are exactly same.

1. Least increase in size of \((A(S(p_i)) \cup D(S(p_i))) \)
\((LADE) \) While choosing an action to include in the
current \(S(p_i) \), an action that that will minimally
increase the size of \((A(S(p_i)) \cup D(S(p_i))) \) is included into
current \(S(p_i) \). If there are multiple actions meeting this
criterion, choice is made arbitrarily. The motivation
for introducing this heuristic is to reduce the number
of causal link variables by controlling the ability of a
step to make conditions true, reduce the number of
variables of type \(Dels(p_i, f) \) and precedence variables
of type \(p_i \prec p_j \) needed for threat resolution and the
clauses needed for resolving threats. The results (Fig. 3)
show that this heuristic lead to the lowest average encoding
solving time and the lowest average number
of clauses and variables (on larger problems).

On the smaller problems (Fig. 2), LADE however
lead to encodings with higher average number of
clauses and variables and higher average solving time
than the LDPC and LADPSC heuristics discussed next.
This is because of the fact that while reducing
the number of potential add and/or delete effects of
a step \(p_i \), one may choose to include actions in \(S(p_i) \)

such that the number of potential pre-conditions of \(p_i \) (size of \(P(S(p_i)) \)) goes up and this can increase the number of causal links.

2. Least increase in the size of \((D(S(p_i)) \cup P(S(p_i))) \) (LDPC) While choosing an action to include in current \(S(p_i) \), an action that that will minimally increase the size of the set \((P(S(p_i)) \cup D(S(p_i))) \) is included into current \(S(p_i) \). If there are multiple actions meeting this criterion, choice is made arbitrarily. The motivation for introducing this heuristic is to reduce the number of causal links by controlling the number of pre-conditions of an action, reduce the number of \(\text{Dels}(p_i, f) \) and \(\text{Needs}(p_i, f) \) type variables and also reduce the number of precedence variables and clauses needed to resolve threats.

3. Least increase in the size of \((D(S(p_i)) \cup P(S(p_i)) \cup A(S(p_i))) \) (LADEPc) This works similar to heuristics 1 and 2, however here an action that minimally increases the size of the set \(D(S(p_i)) \cup P(S(p_i)) \cup A(S(p_i)) \) is included in \(S(p_i) \). The motivation for introducing this heuristic is combine the ideas from the earlier two heuristics LAD and LDPC to achieve larger reductions in the sizes.

Besides measuring the total number of variables and clauses in the encodings, we also measured the number of different types of variables (e.g., \(\text{Add}(p_i, f), \text{Dels}(p_i, f), p_i \prec p_j \), causal links and \(\text{Needs}(p_i, f) \) etc.) and clauses (e.g. those needed for threat resolution, mutual exclusion and enforcing transitivity). We conducted this dissection of the total sizes to find if the heuristics indeed reduced the number of variables and clauses that they were expected to. An interesting trend revealed by this study is that the regular causal HTN encodings (for which \(S(p_i) \) is same as the set of all ground actions from all given task reduction schemas) contain more causal link variables \(O(T^2* | U |) \) than the number of precedence variables \(O(T^2) \), most of the simplified causal HTN encodings of smaller as well as larger problems (preprocessed using LADE, LDPC or LADEPc or Mali [12],[13] strategy) had more precedence variables than causal link variables. This is because the number of precedence variables increases due to the need to enforce transitivity (that is, if \(p_i \prec p_j \) and \(p_j \prec p_k \) are created, \(p_i \prec p_k \) should be created as well). Similarly, though the number of threats resolution clauses in regular causal HTN encodings \(O(T^3* | U |) \) is higher than the number of transitivity axioms \(O(T^2) \), the reverse holds for the simplified encodings of both the smaller and larger problems.

On smaller problems, LDPC and LADEPc lead to lowest lowest average number of causal links and lowest average number of threat resolution clauses. On larger problems (Fig. 3), the LAD heuristic lead to the lowest average number of causal links and the lowest average number of threat resolution clauses.

Our empirical evaluation on smaller and larger problems (Fig. 2 and 3) shows that the average solving times as well as the average number of variables and clauses in the encodings lead to by all the 3 heuristics were lower than the corresponding average values for the causal HTN encoding simplified after using the \(S(p_i) \) computation strategy of Mali [12],[13].

4 Empirical Evaluation

To test the effectiveness of our heuristics, we conducted an empirical evaluation on several benchmark domains. The descriptions of the non-hierarchical versions of benchmark domains used and the "sat4" systematic SAT solver we used are available at \(\text{ftp://ftp.cs.yale.edu/pub/ncdermot/} \) and \(\text{http://aida.intellektik.informatik.th-darmstadt.de/} \) - hoos/SATLIB/ respectively. The task reduction schemas were manually created, by putting together actions for loading and unloading packages and flying planes (transportation logistics), decorating, installation and construction (house building) and barking, debarking and sailing (Ferry), moving trains to different tracks (Meet pass) and putting objects into a briefcase, taking them out and moving the briefcase (Briefcase domain). The description of the house building domain can be found on the home page of AIAI, Edinburgh, UK. The plans in the Meet pass and Ferry domains were purely serial. Thus the number of actions in plans in these domains is same as the plan lengths. (Notation in Fig. 2, 3 - \(V, C, T \) denote the number of variables, clauses in and the times needed to solve the encodings respectively. Times of the solved encodings are in CPU seconds. A "-" denotes that the encoding was too large to store. \textbf{Caus. and Naïve Caus.} are the causal HTN encoding based on \(S(p_i) \) computation strategy in Mali [12],[13] and the regular causal HTN encoding (for which \(S(p_i) \) is same as the set of all ground actions in the reduction schemas) respectively.)

The heuristics are integrated with the code that generates the encodings. Task reduction schemas not required for solving the problems were not used in generating the encodings. It is very common in HTN planning to use only the relevant task reduction schemas, e.g. Smith & Nau [16] reduced the number of nodes in the game tree (for playing bridge) from \(6.01 \times 10^{44} \) to 1300, by using only the relevant task reduction
<table>
<thead>
<tr>
<th>Domain, # Actions in plan</th>
<th>LADE</th>
<th>LDPC</th>
<th>LADEPC</th>
<th>Caus.</th>
<th>Naive Caus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferry, 8, K = 2, T = 8</td>
<td>211</td>
<td>231</td>
<td>231</td>
<td>235</td>
<td>1032</td>
</tr>
<tr>
<td></td>
<td>823</td>
<td>925</td>
<td>925</td>
<td>949</td>
<td>6963</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.55</td>
</tr>
<tr>
<td>Ferry, 15, K = 4, T = 16</td>
<td>747</td>
<td>811</td>
<td>811</td>
<td>1043</td>
<td>3346</td>
</tr>
<tr>
<td></td>
<td>967</td>
<td>6267</td>
<td>6267</td>
<td>9243</td>
<td>75779</td>
</tr>
<tr>
<td></td>
<td>1.09</td>
<td>0.53</td>
<td>0.54</td>
<td>1.16</td>
<td>24.27</td>
</tr>
<tr>
<td>Logistics, 15, K = 4, T = 16</td>
<td>830</td>
<td>694</td>
<td>694</td>
<td>990</td>
<td>5024</td>
</tr>
<tr>
<td></td>
<td>6390</td>
<td>5398</td>
<td>5398</td>
<td>8738</td>
<td>71002</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.41</td>
<td>0.4</td>
<td>0.88</td>
<td>19.71</td>
</tr>
<tr>
<td>Build House, 46, K = 6, T = 48</td>
<td>4281</td>
<td>4191</td>
<td>4191</td>
<td>8415</td>
<td>66140</td>
</tr>
<tr>
<td></td>
<td>11396</td>
<td>112403</td>
<td>112403</td>
<td>124859</td>
<td>3009737</td>
</tr>
<tr>
<td></td>
<td>26.95</td>
<td>25.81</td>
<td>25.83</td>
<td>31.92</td>
<td>-</td>
</tr>
<tr>
<td>Briefcase, 15, K = 4, T = 16</td>
<td>830</td>
<td>694</td>
<td>694</td>
<td>846</td>
<td>5024</td>
</tr>
<tr>
<td></td>
<td>6322</td>
<td>5312</td>
<td>5312</td>
<td>6834</td>
<td>70938</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td>0.89</td>
<td>0.9</td>
<td>0.5</td>
<td>502.13</td>
</tr>
</tbody>
</table>

Figure 2: Empirical evaluation of the 3 heuristics on smaller problems.

<table>
<thead>
<tr>
<th>Domain, # Actions in plan</th>
<th>LADE</th>
<th>LDPC</th>
<th>LADEPC</th>
<th>Caus. WR</th>
<th>Naive Caus. WR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferry, 24, K = 6, T = 24</td>
<td>1617</td>
<td>1617</td>
<td>1617</td>
<td>2511</td>
<td>15252</td>
</tr>
<tr>
<td></td>
<td>18453</td>
<td>18453</td>
<td>18453</td>
<td>35799</td>
<td>334311</td>
</tr>
<tr>
<td></td>
<td>2.28</td>
<td>2.22</td>
<td>2.3</td>
<td>10.62</td>
<td>> 5 min</td>
</tr>
<tr>
<td>Ferry, 31, K = 8, T = 32</td>
<td>2995</td>
<td>3219</td>
<td>3219</td>
<td>4875</td>
<td>33054</td>
</tr>
<tr>
<td></td>
<td>44451</td>
<td>48555</td>
<td>48555</td>
<td>90787</td>
<td>984171</td>
</tr>
<tr>
<td></td>
<td>8.42</td>
<td>10.59</td>
<td>10.49</td>
<td>60.94</td>
<td>-</td>
</tr>
<tr>
<td>Ferry, 39, K = 10, T = 40</td>
<td>4803</td>
<td>5143</td>
<td>5143</td>
<td>7693</td>
<td>61036</td>
</tr>
<tr>
<td></td>
<td>87833</td>
<td>95623</td>
<td>95623</td>
<td>195143</td>
<td>2300763</td>
</tr>
<tr>
<td></td>
<td>56.19</td>
<td>49.34</td>
<td>49.26</td>
<td>551.75</td>
<td>-</td>
</tr>
<tr>
<td>Ferry, 43, K = 11, T = 44</td>
<td>6899</td>
<td>6306</td>
<td>6306</td>
<td>9375</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>117780</td>
<td>128043</td>
<td>128043</td>
<td>260230</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40.92</td>
<td>50.62</td>
<td>50.72</td>
<td>267.93</td>
<td>-</td>
</tr>
<tr>
<td>Ferry, 55, K = 14, T = 56</td>
<td>10027</td>
<td>10671</td>
<td>10671</td>
<td>15585</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>249105</td>
<td>269111</td>
<td>269111</td>
<td>541327</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>125.74</td>
<td>155.46</td>
<td>155.25</td>
<td>> 5 min.</td>
<td>-</td>
</tr>
<tr>
<td>Logistics, 27, K = 7, T = 28</td>
<td>2522</td>
<td>2137</td>
<td>2137</td>
<td>3411</td>
<td>22124</td>
</tr>
<tr>
<td></td>
<td>33042</td>
<td>28604</td>
<td>28604</td>
<td>61154</td>
<td>571006</td>
</tr>
<tr>
<td></td>
<td>7.38</td>
<td>5.14</td>
<td>5.02</td>
<td>45.3</td>
<td>-</td>
</tr>
<tr>
<td>Logistics, 35, K = 9, T = 36</td>
<td>3818</td>
<td>3629</td>
<td>3629</td>
<td>6041</td>
<td>44194</td>
</tr>
<tr>
<td></td>
<td>63704</td>
<td>61616</td>
<td>61616</td>
<td>152597</td>
<td>1489403</td>
</tr>
<tr>
<td></td>
<td>17.8</td>
<td>16.7</td>
<td>16.89</td>
<td>145.46</td>
<td>-</td>
</tr>
<tr>
<td>Meet pass, 30, K = 10, T = 30</td>
<td>7431</td>
<td>7431</td>
<td>7431</td>
<td>7431</td>
<td>105522</td>
</tr>
<tr>
<td></td>
<td>74841</td>
<td>74841</td>
<td>74841</td>
<td>74871</td>
<td>2972866</td>
</tr>
<tr>
<td></td>
<td>1028.39</td>
<td>1013.41</td>
<td>1035.39</td>
<td>1168.47</td>
<td>-</td>
</tr>
<tr>
<td>Briefcase, 40, K = 10, T = 40</td>
<td>4782</td>
<td>4552</td>
<td>4552</td>
<td>3092</td>
<td>59294</td>
</tr>
<tr>
<td></td>
<td>87472</td>
<td>84562</td>
<td>84562</td>
<td>94042</td>
<td>2232582</td>
</tr>
<tr>
<td></td>
<td>20.43</td>
<td>17.97</td>
<td>18.39</td>
<td>25.89</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 3: Empirical evaluation of the 3 heuristics on larger problems.
schemas. The encodings were generated and solved on a Sun Ultra with 128 M RAM. The K chosen was same as the number of reduction schemas required to solve the problems, however this need not be the case. Note that K is a parameter input to the encoding generator and K is not a property of the domain. As in [4], we do not report the times required to simplify the encodings, since these times were significantly small. When we talk of reduction in encoding sizes, it is a reduction over the causal HTN encoding of Mali [12],[13] (which is simplified by pre-processing without heuristics), unless stated otherwise. The empirical results are reported in Fig. 2 and 3.

In a k step state space encoding, a link $o_a \rightarrow o_b$ needs to be represented as $\vee_{i=0}^{k-2} \vee_{j=i+1}^{k-1} (o_a(i) \land o_b(j)) \land (\land_{q=i+1} f(q))$, where $o_a(i)$ and $o_b(j)$ denote that o_a and o_b occur at times i and j respectively and $f(q)$ denotes that f is true at q. Because of this, the state space HTN encodings were always the largest. Thus we do not report results on them. Note that in the previous work [14], we have shown that causal encodings are inferior to state space encodings both in terms of size and solving times. These results hold for domain independent case (where no domain specific knowledge like the task reduction schemas is used).

The maximum reductions in the number of variables, clauses and solving times that we obtained on smaller problems (Fig. 2) over the Mali [12],[13] encodings are 50%, 39% and 55% respectively. Note that there are several other domains like impinest, mystery and molgen-strips (descriptions available at the Yale URL cited earlier) where the actions have common preconditions or add effects or delete effects and we expect the heuristics to yield better results in the hierarchical versions of these domains as well. We did not create artificial domains that had the distinguishing properties that the heuristics exploit. The performance difference between our heuristics (especially LDPC and LADEPC) is likely to increase if they are evaluated on such domains.

None of the larger problems from the chosen domains (Fig. 3) could be solved within half an hour. Thus we decided to add more information to all the encodings in the form of the number of occurrences of each non-primitive task needed to solve the problems, as well as the non-primitive step--non-primitive task bindings, for example, $(s_1 = N_1) \land (s_2 = N_2) \land (s_3 = N_3)$. The experimental results obtained with this additional information are shown in Fig. 3 (satz was used to solve all these encodings). Caus. WR in Fig. 3 is the causal HTN encoding from Mali [12],[13] (that was simplified, but which did not use any heuristics to better compute $S(p_i)$) with additional information in the form of $(s_i = N_j)$ type bindings. Naive Caus. WR is the regular causal HTN encoding with this additional information.

The maximum reductions in the number of variables, clauses and solving times we obtained on larger problems were 40%, 60% and 91% respectively (Fig. 3). These are reductions over the corresponding values for the Caus. WR encoding (to compare encodings with the same additional information). Note that though the additional information helped in solving the larger problems, the heuristics still had a significant impact on the solving times, as shown by these reductions.

We did experimentally evaluate several other heuristics LAE (least increase in the size of $S(p_i)$), LAE (Least increase in the size of $A(S(p_i))$), LDE (least increase in the size of $D(S(p_i))$), LPC (least increase in the size of $P(S(p_i))$) and LPCA (least increase in the sum of the sizes of $P(S(p_i))$ and $A(S(p_i))$ [15]. However these 5 heuristics did not have a significantly different performance than that of the 3 heuristics reported in this paper.

In many cases (as can be seen from the sizes in Fig. 2 and 3), different heuristics lead to the same encoding because of the relationships between the criteria used by different heuristics. It is rare for actions in the planning domains to have (i) same add effects and different pre-conditions and/or delete effects, or (ii) same delete effects and different pre-conditions and/or add effects or (iii) same pre-conditions and different add and/or delete effects. Thus $S(p_i)$s computed by different heuristics may be the same, leading to the same encodings.

Several more heuristics for computing the $S(p_i)$ sets can be developed. Note that when computing $S(p_j)$, interactions of actions already included in it with the actions in the already computed $S(p_j), j \in [1, i-1]$ are not taken into account. A heuristic that adds an action to $S(p_i)$ such that the sum of the sizes of the respective intersections of $A(S(p_i)), j \in [1, i-1]$ with the $P(S(p_i))$ resulting from the inclusion of the action is minimum, better models the requirement that there should not be too many steps that make a pre-condition true. This is a useful heuristic since this requirement also reduces the number of causal link variables. The time required to generate $S(p_i)$ sets using such heuristics is still low order polynomial. The strategy of randomly breaking ties while computing $S(p_i)$ can be replaced by finer criteria that take into account more features of the reduction schemas. The distribution of actions among the reduction schemas matters. For example, the heuristics perform better when n reduction schemas contain an action, than when a single reduction schema containing n occurrences of the
action. Heuristics thus need to be sensitive to more features of reduction schemas. This opens up directions for future work on developing such more sensitive heuristics. Stone et al [17] have stressed the need to have different heuristics for controlling search in plan generation in domains with different characteristics. We stress the need to have different structure-sensitive heuristics for pre-processing the knowledge from different domains.

Our heuristics are based on purely quantitative measures and thus can be integrated with many other techniques of enhancing SAT/CSP-based HTN planning. For example, since boolean satisfiability problems (e.g. \((x_1 \lor x_2)\) can be converted into 0-1 ILP (Integer Linear Programming) (e.g. \((x_1 + x_2) \geq 1\), our results apply to some such other representations as well. The ideas in the heuristics can be adapted to other kinds of planning cast as some form of CSP, where the domain specific knowledge is provided as sets of constraints, e.g. plans to be merged.

5 Discussion

Planners in [1], [8] and [10] cast planning as some form of constraint satisfaction without domain specific knowledge. Blum & Furst [1] reported the Graphplan planner that builds a structure called “planning graph” and searches it to extract a plan. Odd numbered levels in the planning graph are action levels and even numbered levels are proposition levels. Zeroth proposition level is the initial state. A proposition that occurs in proposition level \(i\) occurs in all proposition levels \(j > i\). Similarly, actions in \(i\) th action level also occur in all \(j\) th action levels, \(j > i\). \(i\) th proposition level is a union of the \((i-2)\) th proposition level and the add and delete effects of actions at \((i-1)\) th action level. A planning graph compactly encodes several action sequences of a certain length. Graphplan propagates mutual exclusion relations between actions in the same action level. Kautz & Selman [10] convert the planning graph built by Graphplan into a propositional encoding and solve it.

Kautz & Selman [9] extend the SAT planning approach to include domain specific state constraints, e.g. state invariants and simplifying assumptions (a loaded truck should move immediately). Lotem & Nau [11] constrain the planning process in Graphplan [1] so that the plans also obey the constraints in the task reduction schemas. The simplification approaches in all the planners above that cast planning as some form of CSP with/without domain knowledge differ from our heuristics because these approaches infer additional constraints (generally using the knowledge of initial and goal state) or control the search online (doing dynamic constraint satisfaction) or they have a different type of domain specific knowledge.

6 Conclusion

The performance of planning as satisfiability has been hitherto remarkably improved by various techniques. These techniques are however not sensitive to the structure of the domain knowledge. Motivated by the question of representing the domain knowledge (given in the form of HTNs) in a way that increases the encoding simplification possibilities, we proposed three polynomial time pre-processing and user intent preserving heuristics to achieve these representations. Note that our heuristics themselves do not perform any logical inference on the domain knowledge and do not need to know the initial and goal states of the problem. We empirically demonstrated that on each of the problems, at least one heuristic yielded an encoding that was the fastest to solve and on most of the problems, all heuristics yielded improvements in the sizes and solving times. Given that the current SAT solvers can handle a limited number of variables \(10^4\) and clauses \(10^6\) in real time, the development of such heuristics sensitive to the structure of the domain knowledge is important.

References

[6] Subbarao Kambhampati, Amol Mali & Biplov Srivastava, Hybrid planning in partially hierarchical do-

[16] Stephen J. J. Smith and Dana Nau, Games: Planning and learning, Papers from the 1993 AAAI Fall symposium.
