Checking Interference with Fractional Permissions

John Boyland
Checking Interference with Fractional Permissions

- Non-interference: one piece of code doesn’t affect the results of another piece of code.

- Two models for checking interference:
 - effects (compare read/write effects of two pieces of code)
 - permissions (check uses of state against permissions)

- Previous work:
 - Using effects analysis requires additionally an alias analysis;
 - Using permissions does not satisfactorily distinguish reads from writes.

- This work: read permission is fraction of write permission.
Interference: What?

○ Two computations interfere if the evaluation of one affects the evaluation of the other. (Symmetric definition)

○ Example: (L || R)

\[
\{ y = 1; \; z = x+1; \} \quad || \quad \{ w = y+1; \; z = w-x; \}
\]

- L reads x, writes y and z.
- R reads x and y, writes w and z.

○ Kinds of interference:
 - Read/Write (e.g. y in the previous example)
 - Write/Write (e.g. z in the previous example)
 - Reads do not interfere with each other (e.g. x)
Interference: Why?

- Non-interference, lack of a possibility of interference, enables:
 - cleaner formal reasoning;
 - parallelism without race conditions or contention;
 - code reordering.

- We are interested in “safe” algorithms, one which may overstate, but never understate interference.

- This paper gives a provably safe type system (and a sketch of an algorithm).
Background: Checking Interference with Effects (1 of 3)

Effects are inferred for statements in a bottom-up fashion.

E.g.:
L: \{ y = 1; z = x+1; \}

- FX(L) = \{ reads x, writes y, writes z \}
R: \{ w = y+1; z = w-x; \}

- FX(R) = \{ reads x, reads y, reads w, writes z, writes w \}

We check whether one set contains a write on a variable read or written by the other:
- writes y is in FX(L), reads y is in FX(R);
- writes z is in FX(L), writes z is in FX(R).

See Reynolds [1978], Greenhouse & Boyland [1999].
Effects analysis gets much harder with pointers: \(L \parallel R \)
\[
\begin{align*}
\{ & \ *p = \ *q; \ \ p = \ s; \} \parallel \{ \ r = \ s; \ \ *r = 3 + \ *q; \} \\
\text{– } & \ FX(L) = \text{reads } \{p,q,\ s,\ *q\} \text{ writes } \{*p,p\} \\
\text{– } & \ FX(R) = \text{reads } \{s,r,q,\ *q\} \text{ writes } \{r,*r\} \\
\text{– } & \ \text{No apparent interference, but aliasing may cause it.}
\end{align*}
\]

Effects analysis must be augmented with an alias analysis [Boyland & Greenhouse 1999]:

\begin{itemize}
 \item MayEqual(a,b): a and b may have the same pointer values;
 \item MayEqual is similar to may-alias and to PointsTo;
 \item MayEqual takes into account where a and b are evaluated;
 \item A MayEqual analysis may need to use an effects analysis.
\end{itemize}
Some selected rules: (See Greenhouse [2003])

\[\Gamma \vdash e_1 \not\approx \varphi_1 \quad \Gamma \vdash e_2 \not\approx \varphi_2 \]

\[\Gamma \vdash (\ast e_1 = e_2) \not\approx \varphi_1 \cup \varphi_2 \cup \{ \text{writes } \ast e_1 \} \]

\[\Gamma \vdash s_1 \not\approx \varphi_1 \quad \Gamma \vdash s_2 \not\approx \varphi_2 \quad \varphi_1 \neq \varphi_2 \]

\[\Gamma \vdash (s_1 || s_2) \not\approx \varphi_1 \cup \varphi_2 \]

We need to record uses of expressions in context, to be used by the MayEqual analysis.
The context indicates what state may be accessed.
E.g.: $\Pi = \{x, y, z\}$ means we may access x, y or z.

Pointers are handled using alias types [Smith et al. 2000]
E.g. $v: \text{ptr}(\rho)$ means v is a pointer with value ρ.
E.g. $\Pi = \{\rho\}$ means we may access the memory at ρ.
Quantifiers ($\forall \exists$) are necessary for normal pointer types.

To check interference, partition the permissions Π:
- Π_1 is used to check one part;
- Π_2 is used to check the other part.

Non-interfering by construction.
Related Work:

- CL for checking regions [Walker et al 2000]

What if we want to distinguish reads from writes?

\[
\begin{align*}
\text{write } *a, \text{ read } *b \\
\text{read } *b, \text{ read } *c
\end{align*}
\]
Use bounded quantification to recover write permission:

(We need input/output model for allocation/de-allocation.)
Problem: Duplication of bounded variables is unsound:

It is not possible to recover write permission after sharing.
Instead of copying permissions, we *split* them.

All permissions are treated linearly.
Linearity preserves soundness:

\[\ast a \text{ reads } \ast a, \ b := \ast a \]

\[\ast a \text{ reads } \ast a, \ b := \ast a \]

\[\ast a \text{ reads } \ast a \]

\[\ast a \text{ reads } \ast a, \ b := \ast a \]

\[\ast a \text{ reads } \ast a \]
We need two kinds of polymorphism:
- location polymorphism (as in Alias Types);
- fraction polymorphism (new)
 - $\forall z: z$ stands for a fraction between 0 and 1: $(0,1)$

In the paper, we assume fractions are real numbers $(0,1]$
- Other possibilities are rationals or power-of-two rationals.
- In general, a monoid (associative multiplication with identity)
 - without any inverses (except $1 \cdot 1 = 1$);
 - and a unary operation $1 - z \neq 1$ for $z \neq 1$ where
 $1 - (1 - z) = z$.
Syntax

\[
s ::= v := \text{new} \mid v := v' \mid *v := e \mid \text{skip} \\
 \mid s ; s' \mid s \mid s' \mid \text{if } b \text{ then } s \text{ else } s' \mid \text{call } p \\
\]

\[
e ::= n \mid e + e \mid *v \\
\]

\[
b ::= \text{true} \mid \text{false} \mid v = v' \mid e \neq 0 \\
\]

\[
g ::= \{ p \rightarrow s, \ldots \} \\
\]

\[
\mu ::= \{ v \rightarrow l, \ldots, l \rightarrow n, \ldots \} \\
\]

where \(v \) (source variables), \(l \) (locations), \(p \) (procedures) and \(n \) (numbers) are atomic.
Evaluation: Selected Rules

\[\frac{l \notin \text{Dom} \mu_L}{\langle \mu, v := \text{new} \rangle \rightarrow_g \langle \mu[v \mapsto l, l \mapsto 0], \text{skip} \rangle} \]

\[\frac{\langle \mu, e \rangle \rightarrow \langle \mu, e' \rangle}{\langle \mu, *v := e \rangle \rightarrow_g \langle \mu, *v := e' \rangle} \quad \frac{\langle \mu, *v := i \rangle \rightarrow_g \langle \mu[v \mapsto i], \text{skip} \rangle}{\langle \mu, *v := i \rangle} \]

\[\frac{\langle \mu, s_1 \rangle \rightarrow_g \langle \mu', s_1' \rangle}{\langle \mu, s_1 \mid s_2 \rangle \rightarrow_g \langle \mu', s_1' \mid s_2 \rangle} \quad \frac{\langle \mu, s_2 \rangle \rightarrow_g \langle \mu', s_2' \rangle}{\langle \mu, s_1 \mid s_2 \rangle \rightarrow_g \langle \mu', s_1 \mid s_2 \rangle} \]

\[\langle \mu, \text{skip} \mid \text{skip} \rangle \rightarrow_g \langle \mu, \text{skip} \rangle \quad \frac{\langle \mu, \text{call } p \rangle \rightarrow_g \langle \mu, gp \rangle}{\langle \mu, \text{call } p \rangle} \]

\[\langle \mu, *v \rangle \rightarrow \langle \mu, \mu(\mu v) \rangle \quad \langle \mu, v = v' \rangle \rightarrow \langle \mu, \mu v = \mu v' \rangle \]
Example: Nondeterministic Evaluation

\[\mu_{xy} = \{ a \rightarrow l, b \rightarrow l', c \rightarrow l', l \rightarrow x, l' \rightarrow y \} \]

\[\mu_{12} *a=*b \mid *c=3 \]

\[\mu_{12} *a=2 \mid *c=3 \]

\[\mu_{22} \text{skip} \mid *c=3 \]

\[\mu_{22} \text{skip} \]

\[\mu_{23} \text{skip} \]

\[\mu_{23} \text{skip} \]

\[\mu_{13} *a=3 \mid \text{skip} \]

\[\mu_{13} *a=*b \mid \text{skip} \]

\[\mu_{13} *a=2 \mid \text{skip} \]

\[\mu_{33} \text{skip} \]

\[\mu_{33} \text{skip} \]
Type Domains

\[
E ::= \Delta; \Pi
\]
\[
\Delta ::= \cdot \mid \rho \mid z \mid \Delta, \Delta
\]
\[
\Pi ::= \cdot \mid \pi \mid \Pi, \Pi
\]
\[
\pi ::= z
\]
\[
\xi ::= 1 \mid \varepsilon
\]
\[
\delta ::= z \mid 1 - \varepsilon \mid \varepsilon \varepsilon
\]
\[
\beta ::= v : \text{ptr}(\rho) \mid \rho
\]

where \(z \) and \(\rho \) are fraction and location variables.
Substructural Rules:

\[\cdot, \Pi \equiv \Pi \]

\[\Pi_1, \Pi_2 \equiv \Pi_2, \Pi_1 \]

\[\Pi_1, (\Pi_2, \Pi_3) \equiv (\Pi_1, \Pi_2), \Pi_3 \]

\[\Delta \vdash \epsilon \text{ frac} \]

\[\Delta; \epsilon \pi, (1 - \epsilon)\pi, \Pi \equiv \Delta; \pi, \Pi \]

\[\epsilon(\epsilon'\epsilon'') \equiv (\epsilon\epsilon')\epsilon'' \]

\[(1 - (1 - \epsilon)) \equiv \epsilon \]
Permission Types (Selected Rules)

\[E \vdash_{\omega} s \Rightarrow E' \]

\[\rho \text{ fresh} \]

\[\Delta; 1v : ? , \Pi \vdash_{\omega} v := \text{new} \Rightarrow \rho , \Delta; 1\rho , 1v : \text{ptr}(\rho) , \Pi \]

\[E = (\Delta; \xi v : \text{ptr}(\rho) , 1\rho , \Pi') \]

\[E \vdash e : \text{Int} \]

\[E \vdash_{\omega} *v := e \Rightarrow E \]

\[E \vdash_{\omega} s_1 \Rightarrow E' \]

\[E' \vdash_{\omega} s_2 \Rightarrow E'' \]

\[E \vdash_{\omega} s_1 ; s_2 \Rightarrow E'' \]

\[\Delta; \Pi_1 \vdash_{\omega} s_1 \Rightarrow \Delta'_1; \Pi'_1 \]

\[\Delta; \Pi_2 \vdash_{\omega} s_2 \Rightarrow \Delta'_2; \Pi'_2 \]

\[\Delta; \Pi_1 , \Pi_2 \vdash_{\omega} s_1 \mid s_2 \Rightarrow \Delta'_1 \cup \Delta'_2; \Pi'_1 , \Pi'_2 \]
Consistency Between Memory and Types (1 of 3)

- Permission types
 - indicate aliasing using location variables (ρ);
 - give permission fractions using fraction variables (z).

- We connect types with a memory with a mapping ψ
 - maps location variables to locations;
 - maps fraction variables to real numbers (fractions).

- Consistency requires:
 - aliased variables are indeed aliased.
 - sum of permissions for a cell ≤ 1;
Consistency Between Memory and Types (2 of 3)

\[\psi ::= \{ \rho \rightarrow l, \ldots, z \rightarrow r, \ldots \} \]

\[\psi 1 = 1 \]
\[\psi(\varepsilon \varepsilon') = (\psi \varepsilon)(\psi \varepsilon') \]
\[\psi(1 - \varepsilon) = 1 - \psi \varepsilon \]
\[\psi(\xi \nu : \text{ptr}(\rho)) = [\nu \mapsto \psi \xi] \]
\[\psi(\xi \rho) = [\psi \rho \mapsto \psi \xi] \]
\[\psi(\Pi_1, \Pi_2) = (\psi \Pi_1) + (\psi \Pi_2) \]
Consistency Between Memory and Types (3 of 3)

\[\text{Dom } \psi = \Delta \]
\[\text{Rng}(\psi \Pi) \subseteq [0, 1] \quad \psi; \mu \vdash \Pi \text{ consistent} \]
\[\Delta; \Pi \vdash \mu \text{ ok} \]

\[\psi; \mu \vdash \Pi_1 \text{ consistent} \quad \psi; \mu \vdash \Pi_2 \text{ consistent} \]
\[\psi; \mu \vdash \Pi_1, \Pi_2 \text{ consistent} \]

\[\psi(\rho) = \mu(\nu) \]
\[\psi; \mu \vdash \xi \nu : \text{ptr}(\rho) \text{ consistent} \]
\[\psi \rho \in \text{Dom } \mu \]
\[\psi; \mu \vdash \xi \rho \text{ consistent} \]
Determinism Theorem

○ For a statement s, environment E, and memory μ where
 – s type checks in E, and
 – s has a terminating evaluation in μ, and
 – μ is consistent with E.
Then:
 – all evaluations of s terminate in the same number of steps,
 – all evaluations end up with the “same” memory (up to isomorphism).

○ In particular: no race conditions in parallel code.
Permission Checking Algorithm

❖ The type system is not algorithmic: main difficulty is PAR
 – It requires us to “guess” how to split permissions;
 – Substructural rules can be applied at any time.

❖ Intuition: For PAR, put all permissions in a “bag.”
 – While checking first half, take out permissions as needed:
 • if only read permission is needed, split off a piece;
 • if write permission is needed, bring the whole permission out.
 – Then check second part using permissions still in “bag.”

Further work: formally define the algorithm and implement.
Extensions and Further Work

❖ Records and Recursive Types
 – Permissions for field access;
 – Existential types.

❖ Memory management:
 – handling delete: forbid the use of dangling pointers.
 – handling garbage collection:
 • a new memory isomorphism;
 • collect permissions too.

❖ Connecting with Adoption/Ownership/Uniqueness
Conclusions

- Permission types express in a single formalism
 - Aliasing;
 - Effects.

- Permission types enable interference checking.

- Fractional permissions:
 - permit read/read parallelism,
 - without loss of linearity.
Procedure Types

\[\forall \Delta. (\Pi \rightarrow \exists \Delta'. \Pi') \]

Permissions that are not required by the procedure are passed through unchanged.

Example: a procedure \(p \) such that \(gp = x := y \) has (among other types) the type

\[\forall \rho, \rho', z. \left(\exists \rho''. 1x : \text{ptr}(\rho), zy : \text{ptr}(\rho') \rightarrow \right. \]

\[\left. \exists \rho''. 1x : \text{ptr}(\rho''), zy : \text{ptr}(\rho') \right) \]