1. **Decision Trees and Lower Bounds.** In class, you saw how the running time of a comparison-based sorting algorithm can be bounded from below (i.e., “lower-bounded”) by analyzing the height of the decision tree associated with the sorting algorithm. Let us apply the same kind of analysis to **FindMax**, the problem of finding the largest number among \(n \) numbers. Consider a comparison-based algorithm that solves **FindMax**.

 a. Describe the decision tree \(T \) associated with such an algorithm. In particular, what does its internal nodes represent? What does its external nodes represent?

 b. Suppose the input is \(x_1, x_2, x_3, x_4 \). Show the decision tree associated with the tournament-style algorithm for finding the maximum of \(x_1, x_2, x_3, x_4 \).

 c. Based on your description in part (a), what is a lower bound on the height of \(T \). Hence, provide a function \(f(n) \) so that any algorithm that solves **FindMax** should run in \(\Omega(f(n)) \) time.

2. Given a set of \(n \) numbers, suppose we want to find the \(i \) smallest numbers in sorted order. We have several options for doing this:

 OPTION 1: Sort the \(n \) numbers and list the \(i \) smallest numbers.

 OPTION 2: Build a heap with the \(n \) numbers and apply removeMin \(i \) times.

 OPTION 3: Use QuickSelect to find the \(i \)th smallest number \(s \), partition the \(n \) numbers using \(s \), and sort the \(i \) smallest numbers.

 For each of these options, find the algorithm that implements it in the best worst-case running time, and analyze the running time in terms of \(n \) and \(i \).

4. C-4.15.