CS 535 Homework 2
Due: February 9 (Th), in class.

Undergraduate students, answer problems 1, 2, 3. Graduate students, answer all problems.

1. Suppose array A contains $n - 1$ of the n integers in the set $\{1, 2, \ldots, n\}$. We want to design an algorithm that will determine the missing number. For example, if $n = 4$ and $A = [2, 1, 4]$ is the input, the algorithm should output 3.
 a. Describe a brute force way of solving this problem. What is its running time?
 b. Now, design an $O(n)$-time algorithm for the problem. Please make sure that you explain why your algorithm works and why its running time is $O(n)$.

2. There are n coins c_1, c_2, \ldots, c_n. Of these n coins, $n - 1$ are genuine and one is fake. All the genuine coins have the same weight; the fake coin is either lighter or heavier. We have a balance beam with two large pans. Our goal is to identify the fake coin with as few weighings as possible.
 Here’s a simple procedure for finding the fake coin in the case when $n = 3$: First, using the balance beam, compare c_1 and c_2. If their weights are equal, c_3 is the fake coin. If their weights are not equal, compare c_1 and c_3. If their weights are equal, c_2 is the fake coin; otherwise, c_1 is the fake coin. This procedure then identifies the fake coin in 2 weighings.
 a. When $n = 9$, describe a procedure that would identify the fake coin using as few weighings as possible in the worst case.
 b. Generalize your method above to an arbitrary n. How many weighings are needed by your procedure?

3. Let A be an array containing n numbers. Define $f\text{lip}(i), 0 \leq i \leq n - 1,$ to be the operation where $A[0, 1, \ldots, i]$ is modified to $A[i, i - 1, \ldots, 0]$. For example, if $A = [20, 5, -11, 3, 7]$ and $f\text{lip}(3)$ is called, the result is the array $[3, -11, 5, 20, 7]$. Our goal is to sort A using $f\text{lip}(i)$ operations only.
 a. Describe a sequence of flips for $A = [20, 5, -11, 3, 7]$ so that the entries of the final array is sorted in increasing order.
 b. Now, describe a general method for sorting an array A containing n numbers using flips.
 c. In the worst case, how many flips will your algorithm perform? How much time will it take to implement $f\text{lip}(i)$? Based on your answers to the previous two questions, what is the running time of your algorithm?

4. C-1.28.