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Abstract

CONCURRENCY ANALYSIS BASED ON FRACTIONAL

PERMISSION SYSTEM

Yang Zhao

The University of Wisconsin-Milwaukee, 2007

Under the supervision of Prof. John Boyland

Concurrent programs are hard to write and debug because of the inherent concur-

rency and indeterminism. The most common runtime errors in concurrent programs

are data races and deadlocks.

This thesis presents a “fractional permission” type system for a Java-style shared-

memory programs. A permission is a linear value associated with some piece of state

in a program. Fractions are used to distinguish reads from writes and the permission

nesting is used to indicate that some permissions may be nested in some others. Within

the permission analysis, each expression in the program will be checked to determine

whether it is permitted to be executed under the granted permissions.

Permissions come from the design intents expressed by field and method annotations.

Besides the traditional pointer annotations (uniqueness, nullity ...), a field may be

attached a protector, such that any access to this field should be in the synchronized

block holding that protector object. The protector could be either the receiver, or

some formal parameters appearing in the class definition. Method annotations are



not only the traditional “reads”, “writes” effects, but also some lock usage including

“requires”, “uses” and some partial order among locks.

We provide the fractional permission type system as well as the operational seman-

tics for a simple object-oriented language. A consistency property between the static

permission environment and the dynamic runtime state is established, with which we

show the soundness as well.

The novel technical features of this approach include: (1) A unified permission form

is created to represent all annotations in multithreaded programs including uniqueness,

nullity, method effects, lock protected state etc. (2) The permission type system is

extended to programs with unstructured parallelism and synchronization; (3) Fields

and maybe their pointed-to objects are attached some protection mechanism; (4) Lock

objects could be ordered based on some levels; (5) The permission nesting is used to

simulate the protection mechanism between fields (data groups) and their guards. (6)

Formal rules for permission typing, transformation and consistency.

Major Professor: Date:
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Chapter 1

Introduction

1.1 Why Concurrency?

In computer science, concurrency is a property of systems in which several computa-

tional processes are executing at the same time, and potentially interacting with each

other [1].

Moore’s Law is the observation that the amount you can do on a single chip doubles

every two years. Historically, Moore’s Law has delivered ever faster computing power

to more and more demanding audiences. But it is about to break down–there’s a limit

to how many interconnections you can create on a chip. Rather than producing faster

and faster processors, companies such as Intel and AMD are instead producing multi-

core devices: single chips containing two, four, or even more processors [2]. In this

case, the concurrent processes may be executing truly simultaneously, that is, your

software should take advantage of that extra power to run on separate processors. If

your programs aren’t concurrent, they’ll only run on a single processor at a time which

may cause your code slow comparing to others.

Even for a single hardware processor, multithreading enables a program to make the

best use of available CPU cycles, thus allowing very efficient programs to be written.

For example, multithreading is a natural choice for handling event-driven code, which is

so common in today’s highly distributed, networked, GUI-based environments [3]. This

kind of programs spends a great deal of time waiting for outside events. To respond

in time, people may use time slicing. That is, one-processor executes only a single
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thread in any given time slice. Operating systems simulate doing many things at once

by rapidly time-slicing between threads.

The concurrent programming is becoming a mainstream programming practice, but

it is difficult and error prone. The difference between a sequential system and a con-

current system is the fact that multiple parallel threads may interact with each other

nondeterministically which makes it difficult to extend traditional program analysis

techniques developed for sequential systems to concurrent systems. There are two com-

mon runtime errors: data races and deadlocks. A data race occurs when two threads

concurrently access the same data without synchronization, and at least one of the

accesses is a write. Data races involving shared resources can result in unpredictable

system behavior or some severe runtime exceptions.

Example 1 : Assuming there is an account object a and its balance field is $100 orig-

inally. If we in parallel deposit money within different threads, then the field balance

will be updated in parallel at the same time (the || is used to indicate there are two

concurrent computations):

a.balance = a.balance + 10 || a.balance = a.balance + 20

This piece of code may exhibit unexpected behaviors. Because of the nondeterministic

interference between these two threads, there are more than one execution paths. Fig-

ure 1.1 lists some of them. For instance, the (a) shows such an execution path: the first

thread may load the balance field of the account object and add a constant 10, then

just before storing the new value to the field, it yields to the second thread to finish the

whole deposit process. After that, the first thread continues to do the store operation.

Using this path, the final value for the balance field is $110, which only reflects one

deposit operation. The (b) in Figure 1.1 shows another path ending with $120 instead.
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Neither (a) nor (b) gives a satisfied result, since we are supposed to get a $130 result

((c) shows such a path).

read balance

10

+

store balance

read balance

20

+

store balance

......

......

balance=100

balance=110

read balance

10

+

store balance

read balance

20

+

store balance

......

......

balance=100

balance=120

read balance

10

+

store balance

read balance

20

+

store balance

......

......

balance=100

balance=130

(a) (b) (c)

Figure 1.1: Data races.

This kind of problems is caused by the date race among different threads in parallel

which could be easily fixed by using synchronization:

synchronized a do { a.balance = a.balance + 10 }

|| synchronized a do { a.balance = a.balance + 20 }

Either thread that trying to execute the deposit operation has to acquire the lock of

the account object first. With the help of mutually exclusive lock, only one thread is

able to hold the lock at any time, therefore the synchronization ensures that the two

deposit operations are not interrupted in unexpected ways. Figure 1.2 demonstrates two

possible paths with using synchronization. In other words, the usage of synchronization

eliminates some “bad” paths.

A deadlock appears when multiple concurrent threads are holding some resources

but waiting for more that are currently held by some others. It is possible that none

of the parallel threads can make progress. For example: thread t1 holds resource r1

waiting for r2, t2 holds r2 waiting for r3, ..., tn holds rn waiting for r1. All of them

are blocked and the whole program gets stuck. There is a classic deadlock example in

computer science: Dining philosophers problem which is retold by Tony Hoare [4].
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read balance

10

+

store balance

read balance

20

+

store balance

......

......

balance=100

balance=130

(a)

acquire a acquire a

release a release a

read balance

10

+

store balance

read balance

20

+

store balance

......

......

balance=100

balance=130

(b)

acquire a acquire a

release a release a

Figure 1.2: Race free.

Example 2 : For a transfer operation that withdraw money from a checking account

and deposit the same amount to the savings account, it’s safe to lock both checking and

savings accounts before this transfer and there are two possibilities that either lock the

checking account before the savings account, or the other way around. If two transfers

with different locking sequence are executed in parallel, then there may be a problem.

synchronized checking do {synchronized savings do {...}}

|| synchronized savings do {synchronized checking do {...}}

It is race-free, and it may be ok sometimes (see the execution path in Figure 1.3.(a)),

but it may also encounter a deadlock (see the execution path in Figure 1.3.(b)): After

the checking is locked by the first thread, it yields to the second thread to lock savings.

But when the second thread tries to lock the checking, it fails, since the checking is

held by the first thread who is currently expecting the savings. Neither of the two

parallel threads could execute further more and the whole program gets stuck.
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...
...

acquire checking

acquire savings

release savings

release checking
...

...

acquire savings

acquire checking

release checking

release savings

...
...

acquire checking

acquire savings

release savings

release checking

...
...

acquire savings

acquire checking

release checking

release savings

deadlock

(a) (b)ok

Figure 1.3: Deadlock.

1.2 Concurrency Analysis

The concurrency analysis is an analysis for multithreaded programs that can be used

to detect parallel programming errors or enable optimizations.

Numerous static and dynamic analysis techniques are designed to ensure the con-

currency programs are free of race conditions and deadlocks. The difference between

static and dynamic analysis is that the former does not need to run the program while

the latter does. Moreover, the dynamic analysis may not discover all the errors since

it is difficult (or even impossible) to go through all the possible execution paths. As

far as we know, most concurrency analysis techniques are static although they may

additionally require annotations or use approximations and may not precisely simulate

the actual runtime behaviors. Roughly, there are mainly two directions: the fixed-point

analysis and the type system.

The fixed-point analysis can be either flow-sensitive [26, 31, 32] or flow-insensitive

[33, 34]. The former combines existing sequential analyses with the interference in-

formation between parallel threads, while the latter ignores the flow of control and

represents programs as a set of statements which can be executed multiple times in
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any possible order. Hence the flow-insensitive analysis may automatically model all the

possible interleaving of statements from different threads, however it is less precise than

its flow-sensitive counterparts normally [35].

Numerous static analysis techniques are designed to ensure the parallel programs

are free of data races [26, 27, 36], and some of them are based on the programming

language’s type system with annotations [15, 13, 9, 10, 20]. For example, Boyapati and

others [9, 10] introduce a variant of ownership types with which all fields are protected

by their owners and any access to an object needs to have its owner (root-owner) in

the context. Flanagan and others [15, 13] require every field to have a guard object

which must be held whenever that field access happens. Guava [12] is a dialect of Java

whose rules statically guarantee that parallel threads access shared data only through

synchronized methods. Kobayashi and others [20, 23] use type systems for analyzing

behavior of concurrent processes to reason about deadlock-freedom and safe usage of

locks.

In previous work, Boyland introduces a fractional permission type system to check

all the possible interference in a simple non-synchronizing imperative language with

structural parallelism [5]. He uses fractions to distinguish reads from writes and shows

that the permission system enables parallelism to proceed with deterministic results.

After that, a nesting relation in the permission system is designed to connect effects

and uniqueness in an object-oriented language without parallelism [7].

In this thesis, we further extend the fractional permission to multithreaded programs

with synchronization. Our main concerns are the data race and deadlock detection. In

our permission system, field and method definitions need to be attached some non-

executable annotations representing the design intents in the code. High-level annota-

tions could be translated into their permission representation and then every expression
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is checked to determine whether it is permitted to be executed under given permissions.

A method is well permission-formed if its body can be checked using its declared per-

mission type.

1.3 Outline

The remainder of this document is organized as follows. Chapter 2 provides several

static concurrency analyses that are closely related to our concurrent permission sys-

tem. Our analysis borrows some techniques from them. Chapter 3 defines a simple

object-oriented language including all kinds of program annotations. The operational

semantics is given as well. The following chapters focus on permissions: Chapter 4 first

introduces the permission syntax step by step, then shows how to translate all kinds

of annotations into their permission representation; Chapter 5 provides all permission

checking rules and transformation rules as well; Chapter 6 builds the consistency be-

tween the static permission environment and the dynamic runtime state with some

flattening rules, then the soundness property is established. In Chapter 7, We briefly

introduce some issues about the implementation and provide several examples to demon-

strate the permission checking. Finally, we discuss some open issues in Chapter 8 and

conclude in Chapter 9.
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Chapter 2

Related Concurrency Analysis

In this chapter, we go though three kinds of concurrency analysis that are closely related

to our permission system. Most of modern programming languages are equipped with

type systems, which help reasoning about program behavior and early finding bugs.

Among all kinds of type-based concurrency analysis, the typical ones include Boyapati’s

ownership system and Flanagan’s type-based rccjava. Greenhouse’s lock analysis is

an annotation-based approach for expressing design intents in multithreaded programs

with some useful “mechanical” properties.

2.1 Owners-as-Locks

Ownership is a recognized alias control technique. With ownership, each object has

another object as its owner. The root of the ownership hierarchy is often called “world.”

Some researchers propose an owners-as-dominators model: any reference to an object

must pass that object’s owner [39, 40, 41, 10].

Boyapati et al. [11, 9] extend ownership to concurrent programs. Programmers

associate every object with a protection mechanism that ensures the accesses to the

object never create data races. The specified protection mechanism for each object act

as part of the type of the variables that point to that object.

First, each object is owned by another object, by itself, or by a special per-thread

owner called thisThread which is implicitly held by the local thread. Objects owned

by thisThread, either directly or transitively, are local to the corresponding thread
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and cannot be accessed by any other thread. Figure 2.1 shows the ownership relation

among some objects. The arrow shows an owner relation such that the source is the

owner of the sink. For example, the thisThread is the owner for both o1 and o3, while

the o4 is self-owned. It is explicitly required that any object has a unique owner. The

multiple ownership has not been supported yet.

thisThread

O1

O2
O3 O5

O4

O6

Figure 2.1: Ownership relation.

Second, the requirement for a thread to access an object is that the thread must

hold the lock on the root of the ownership tree (root-owner for short) that the object

belongs to. It’s clear that any thread has already held the thisThread at the very

beginning. For example, it’s safe to access o1, o2 and o3 since all of them has the same

thisThread as their root-owner, while the o4 must be held in order to access itself, o5

or o6. Since any access to an object must go through its root-owner, it is enough to

guarantee that objects are protected by mutual exclusion locks. Moreover, thread-local

objects can be accessed without synchronization.

Figure 2.2 shows a concrete example from Boyapati’s Race-free Java [10]. For a code

segment shown below, it creates an ownership relation tree in Figure 2.3.

TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>;

TStack<thisThread, self> s2 = new TStack<thisThread, self>;

A TStack is a stack of T objects and is implemented using a linked list. A class definition

in Race-Free Java is parameterized by a list of owners, where the first one is always

the owner of the current instance. This parameterization helps programmers write
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class TStack<thisOwner, TOwner> {
TNode<this, TOwner> head = null;

T<TOwner> pop() accesses (this) {
if (head == null) return null;
T<TOwner> value = head.value();
head = head.next();
return value;

}
......

}

class T<thisOwner> { int x=0; }

class TNode<thisOwner, TOwner> {
T<TOwner> value;
TNode<thisOwner, TOwner> next;

T<TOwner> value() accesses (this)
{ return value; }

TNode<thisOwner, TOwner> next()
accesses (this)
{ return next; }
...

}

Figure 2.2: Stack of T Objects in Race-Free Java

thisThread

s1

s1.head s1.head.next

s1.head.value
s1.head.next.value

s1.head.next.next

s1.head.next.next.value

s1

s2.head s2.head.next

s2.head.value
s2.head.next.value

s2.head.next.next

s2.head.next.next.value

Figure 2.3: Ownership Relation for TStacks s1 and s2.

generic code to implement a class, but create different objects of the class with different

protection mechanism.

Methods may be attached some effects showing the requirements of its body. The

“accesses” annotation shows that its target object may be accessed (read or written)

in the body. From the protection mechanism mentioned above, this effect implicitly

indicates that the root-owner of the target object should be held at the method entry,

otherwise it will be unsafe. In the example, the value and next methods in the TNode

class both assume that the callers hold the lock on the root-owner of their receiver

object. Without the “accesses” clause, the two methods would not have been well-

typed.
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Immutable objects and unique pointed-to objects are accessible without synchro-

nization. Unique pointers are very important in concurrent programs, since they are

useful to support object migration between threads, thus some optimizations, such as

removing unnecessary synchronizations, are possible.

Boyapati and others [10] further add the deadlock detection into their ownership

system. Objects that own themselves are locks. Each lock object may belong to some

lock level, which forms a partial order. When a thread tries to acquire a new lock l,

the levels of all the locks that the thread currently holds are greater than the level of l.

In other words, locks must be obtained in descending order. A thread may also acquire

a lock that it already holds. The lock acquire operation will be redundant in this case.

Ownership types provide a statically enforceable way of specifying object encapsu-

lation and they are useful for preventing data races because the lock that protects an

object can also protect its encapsulated objects. However, the ownership type system

is very restrictive. For instance, it does not distinguish the reads from writes. Both

of them are considered as accesses. Moreover, different fields of an object have to be

protected by a same root-owner of the object.

2.2 Type-based rccjava

Rccjava is a type-based race detection tool used to check multithreaded Java programs

developed by Flanagan and others [13, 15, 18].

In Rccjava, a class may be parameterized by external locks, which allows its fields

to be protected by some locks external to the class. Each field must have an annotation

“guarded by l”, such that any access (either read or write) to this field is required to

have the l been held by the current thread.

A class definition contains a (possibly empty) sequence of formal parameters or
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ghost variables. These ghost variables are only used by the type system to verify that

the program is race free, thus they won’t affect the run-time behavior of the program.

Figure 2.4 shows an example of a dictionary that maps keys to values. In this example,

class Node<ghost Dictionary d> {
String key guarded by d = null
Object value guarded by d = null
Node<d> next guarded by d = null

void init(String k, Object v,
Node<d> n) requires d {

node.key = k; node.value = v;
node.next = n

}

void update(String k, Object v)
requires d {
if (this.key.equals(k)) {
this.value = v

}else if (this.next != null) {
this.next.update(k,v)

}
}
......

}

class Dictionary {
Node<this> head guarded by this = null

void put(String k, Object v) {
synchronized this in {
if (this.contains(k)) {

this.head.update(k,v)
}else {

let Node<this> node =
new Node<this> in {

node.init(k,v,this.head);
this.head = node

}
}

}
}
......

}

Figure 2.4: A synchronized dictionary.

the dictionary is represented as an object containing a linked list of Node objects, where

each Node contains a key, a value, and a next reference pointing to the next. The

class Node is parameterized by the enclosing dictionary d which guards all the fields of

Node; and each method of Node requires that the d is held on the entry. Each method

of Dictionary first acquires the receiver lock and then proceeds with the appropriate

manipulation of the linked list. Since all fields of the linked list are protected by the

dictionary lock, the type system verifies that this program is well typed and race free.

A class may be annotated as “thread local”, such that any instance of that class

is local to a particular thread and thus is safely accessible without synchronization.

This type-based race detection tool partially improves Boyapati’s owners-as-locks
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model by specifying each field with a guard object, which makes the type system more

flexible and powerful. However, rccjava enforces every field to have a guard and it

does not have anything about deadlocks. Furthermore, this type-based analysis relies

on programmer-inserted type annotations that describe the locking discipline, it limits

rccjava’s applicability to large, legacy systems. Flanagan and others [19, 14] further

develop the annotation inference techniques to achieve practical static race detection

for large programs,

2.3 Concurrency Assurance in Fluid

Greenhouse and others [27, 28] explore the costs and benefits of a new annotation-based

approach for expressing design intents. They use annotations to express “mechanical”

properties such as lock-state associations, uniqueness of references, and encapsulation

of state into named aggregations.

A fundamental requirement for assuring the correct use of shared state is the identi-

fication of state that is shared, where state may encompass multiple variables and span

multiple objects. There are several kinds of annotations used in their system including

regions, effects, lock-state association, lock usage and concurrency policy.

Regions are names for extensible groups of fields (Java instance and class variables).

Publicly visible regions represent the abstract data manipulated by the abstract oper-

ations of the class.

There are two techniques for aggregating state from many objects into a single

region, where the first is aggregation through uniqueness and the second is achieved by

parameterizing class definitions by regions. That is, any class may be attached a formal

parameter that indicating the region into which the instance of itself is aggregated.

The code segment in Figure 2.5 shows an example of this situation. The CachedThread
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is defined with a formal parameter Backbone that aggregates the instance of class

CachedThread, thus the freelist is aggregated into the region this.Threads in class

ThreadCache.

class CachedThread /*@<region Backbone>*/ extends Thread {
......

}

public class ThreadCache {
protected Cachedthread /*@<this.Threads>*/ freelist;

}

Figure 2.5: Aggregation through parameterization.

Effect annotations basically shows that (1) which state is affected and (2) how it

is affected. There are two effect annotations: “reads” and “writes” that are able to

show the different effects that may happen in the body.

Programmers are able to identify shared regions and describe how they are to be

protected by introducing lock annotations into classes, for example:

/* lock mutex is field protects region ∗ /

This indicates that the shared region can only be accessed when the lock is held, where

the lock is referenced by field with an abstract name mutex. Moreover, the field can

only be either the receiver or an immutable field. This requirement prevents the identity

of the lock from changing.

There are two lock usage annotations.

/* requires mutex1, ...mutexn */

Callers of such a method must acquire the named locks before invoking it.
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In addition, locks can be method return values, which is generally specified using

/* returns lock mutex */

The concurrency policy of a class implementation specifies which methods have

potential executions that can be safely interleaved. They distinguish between two uses

of concurrency policy: guiding policy that restricts the implementation of a class, and

client policy that restricts the use of particular implementation.

The guiding concurrency policy of a class sets an upper bound on the extent of inter-

leaving for the methods of a class and its subclasses. That is, the guiding concurrency

policy defines safe or unsafe concurrency for a class implementation. The client policy

specifies pairs of methods that clients of the class are (and are not) allowed to invoke

concurrently, constraining the design decisions of clients. The following annotations to

the implementation of a method m

/*@ safe with method1, ...,methodn */

declares that methods m, method1, ..., methodn may be invoked concurrently by clients.

The client policy thus describes to clients of a class which potentially unsafe method

interactions they avoid. A potential race condition exists if a conservative analysis

cannot assure consistent regard to the policy, i.e., that unsafe method pairs are not

used concurrently by a client.

Greenhouse’s concurrency assurance has some advantages over previous ones. For

example, both ESC/Java [29, 30] and rccjava [13] associate fields directly with locks,

while this assurance associates locks with abstract regions, enabling retention of en-

capsulation and support for program evolution and subclassing. Furthermore, neither

ESC/Java nor rccjava is able to represent unique pointer, but this assurance uses

uniqueness to aggregate state.
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2.4 Summary

In this chapter, we go though three static concurrency analyses that are closely related to

our work. Among the three, both Boyapati’s ownership system and Flanagan’s rccjava

are type-based approaches, and Greenhouse’s assurance primarily resemble type sys-

tems. Boyapati’s system deal with both data races and deadlocks, while Flanagan’s

and Greenhouse’s only concern the data races. Furthermore, the Boyapati’s owners-as-

locks system is pretty neat and powerful, but more restrictive than the other two.

From the next chapter, we start to introduce the permission system. At first, we

define a simple object-oriented language with annotations and then show the evaluation

based on the operational semantics.
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Chapter 3

Formal

We use a simple object-oriented language extended from ClassicJava and ConcurrentJava

[13, 10, 42] with some additional annotations [28] and parameterized classes. In this

chapter, we give the language syntax and its operational semantics.

3.1 Syntax

We give the syntax of this language in Figure 3.1. A shared-memory program consists of

several class definitions defn which further includes level, field and method definitions.

Each class is parameterized by zero or more formal guard objects g which may be

used in the annotations for fields and methods. A class may include a “thread local”

modifier which means the instances of this class are only accessed in the thread that

creates it.

There are two kinds of fields: regular fields and data groups (also called regions).

The data groups are names for extensible groups of fields. Publicly visible data groups

represent the abstract data manipulated by the abstract operations of the class. One

data group may be “in” another. That is to say, data groups can be nested.

There are several field annotations:

• “final”: This field is not changeable after its first assignment.

• “guarded by guard”: This field (or data group) is protected by the guard. In other

words, any access to this field (or data group) should be inside of a synchronized

block holding the guard which could be either the self object or a formal guard

parameter in the class definition. It’s obvious that the guard is immutable.
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P ::= defn
defn ::= [thread local] class cn extends cn′{level field meth}
level ::= Level lv
field ::= [pa]∗ cn f [fa]∗ | group G [fa]∗

meth ::= cn m(arg) [ma]∗ {e}
pa ::= unique | shared | nonNull | maybeNull
fa ::= final | guarded by guard | in G | lessThan lv | greaterThan lv
ma ::= reads (e) | writes (e) | requires (lock) | uses (lock) | from(e) | lock<lock
guard ::= this | g
lock ::= f | guard
cn ::= C<g>
arg ::= [pa]cn x
e ::= new C | x | e.f | e.f =e | e;e | let x=e in e | if e==e then e else e

| e op e | e.m(e) | e.C#m(e) | synch e do e | fork (x) e | skip | ie
ie ::= hold o do e | e||...||e

C ∈ class names
lv ∈ level names
f ∈ field names
m ∈ method names
o ∈ object references

Figure 3.1: Syntax

• “in G”: This field (or group) is nested in a group G.

• “lessThan lv” and “greaterThan lv”: The object that pointed to by the field

has a lower level and a higher level than the level lv respectively.

The pointer annotations apply to any pointer, not only reference fields, but also

formal parameters and the receiver object:

• “unique”: This pointer is either the null pointer or the only reference to the

pointed-to object.

• “shared”: This pointer is either the null pointer or it is not the only reference to

its pointed-to object.
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• “nonnull”: This pointer is not null, but a nonnull annotated field reference can

only be assumed nonnull after the constructor call.

• “maybenull”: This pointer may be null or not.

Different pointer annotations may be intermixed.

Method annotations indicate the effects and requirements of the method invocation:

• “reads (e)” and “writes (e)”: These two are the classic method effects indicat-

ing the possible read and write accesses to the e in the method body respectively.

• “requires (lock)”: The sequence of lock are required to be held at the method

entry.

• “uses (lock)”: The sequence of lock may be acquired by synchronization expres-

sions inside of the method body.

• “lock< lock ’ ”: The object lock has a lower level than the lock′.

• “from(e)”: This represents a return value that borrows from the named effect

when the method invocation ends.

Expressions include pure allocation1, variable read, field read, field write, sequential

composition, local declaration, conditional 2, arithmetic operation, method dispatch,

static method call, synchronization, thread spawn 3 and skip. The hold expression and

parallel composition are internal expressions that will be used not in regular code, but

in internal evaluation.
1A regular allocation is implemented by a pure allocation followed by a constructor invocation.
2The condition part of the conditional expression is a comparison of two expressions whether or not

they are pointing to the same location.
3The expression fork (x) e spawns a new thread with arguments x to evaluate e. The evaluation

is performed only for its effect; the result of e is never used. Note that the Java mechanism of starting
threads using code of the form Thread t=...; t.start(); can be expressed equivalently in here as
fork (t) t.start();.
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3.2 Operational Semantics

Annotations are only used to do analysis, thus they are non-executable and hence

have no effect on the fundamental compiler and runtime environment. Therefore, our

evaluation is only based on the original code without any annotation. Here, we use an

operational semantics to demonstrate the expression evaluation.

The thread-local operational semantics without thread spawn is given in terms of a

small-step evaluation which has a form:

(µ; e)
p−→ (µ′; e′)

Given a memory µ, an expression e can be one-step evaluated to e′ in a thread p while

side-effecting memory to µ′. Here, the p is maintained as an integer acting as a thread

number and the memory is defined as a mapping from a location (a pair of object

address and field name) to the value at that location:

µ ∈ M = (O × F ) ⇀ O

In addition, we suppose the (allocated and unallocated) object space is partitioned by

class such that “class(o)” always gives the precise type for any object reference o and

we assume an unlimited supply of objects of any type.

The evaluation rules are partitioned into two groups: non-concurrency and concur-

rency related. They are in Figure 3.2 and 3.4 respectively.

3.2.1 Non-concurrency Related Evaluation

The rules that simply move the evaluation to a subexpression are collected into E-

Common using an evaluation context E [•] that shows which subexpression will be

evaluated next 4.
4The $0 used in E-Skip represents a null pointer.
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The auxiliary rules for fields(C) and mbody(C,m) are defined in Figure 3.3 where

the high-level annotations are removed. The CT is a class table that takes a class name

and then returns its definition. α is the method types in permission (we get back to

this in the next chapter).

E [•] ::= •.f | •.f =e | o.f =• | •;e | let r= • in e | if • ==e then e else e
| if o== • then e else e | • op e | o op • | •.m(e) | o.m(o, •, e)
| •.C#m(e) | o.C#m(o, •, e) | synch • do e | hold o do •

E-Common

(µ; e)
p−→ (µ′; e′)

(µ; E [e])
p−→ (µ′; E [e′])

E-New
∀f ∈ fields(C).(o, f ) /∈ Dom(µ)

(µ; new C)
p−→ (µ[(o, f ) 7→ $0 | f ∈ fields(C)]; o)

E-Arithmetic
o3 = o1 op o2

(µ; o1 op o2)
p−→ (µ; o3)

E-Read
o′ = µ(o, f )

(µ; o.f )
p−→ (µ; o′)

E-Write
µ′ = µ[(o1, f ) 7→ o2]

(µ; o1.f =o2)
p−→ (µ′; o2)

E-Dispatch
mbody(class(o0),m) = (x, e, α) |x| = |o|

(µ; o0.m(o))
p−→ (µ; e[this 7→ o0, x 7→ o])

E-Call
class(o0) 4 C mbody(C,m) = (x, e, α) |x| = |o|

(µ; o0.C#m(o))
p−→ (µ; e[this 7→ o0, x 7→ o])

E-Local

(µ; let x=o1 in e2)
p−→ (µ; [x 7→ o1]e2)

E-IfTrue
o1 = o2

(µ; if o1==o2 then e3 else e4)
p−→ (µ; e3)

E-IfFalse
o1 6= o2

(µ; if o1==o2 then e3 else e4)
p−→ (µ; e4)

E-Seq

(µ; o1;e2)
p−→ (µ; e2)

E-Skip

(µ; skip)
p−→ (µ; $0)

Figure 3.2: Non-concurrency-related evaluation rules.
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fields(Object) = {}

CT (C) = class C extends C ′{field, meth} fields(C ′) =
{
f
}

fields(C) =
{
f , fieldnames(field)

}
CT (C) = class C extends C ′{field, meth} (C m(x) {e}) ∈ meth

mbody(C,m) = (x, e, α)

CT (C) = class C extends C ′{field, meth} m is not defined in meth

mbody(C,m) = mbody(C ′,m)

Figure 3.3: Auxiliary definition.

3.2.2 Concurrency Related Evaluation

This group includes rules for thread spawn, parallel composition as well as lock acquire-

ment and release.

Any thread can lock or unlock objects, but one object can only be locked by at most

one thread at a time, thus an object is free to be locked only when it is in unlocked

status. In order to model this feature, we add an implicit field “Lock” to every object

to represent whether this object is locked or not. If the Lock field of an object is a

null pointer, then it is in the unlocked state, otherwise it is in the locked state and the

pointed-to object by the Lock field is the thread that is currently holding it.

For a synchronization expression synch e1 do e2, it is required to evaluate the

expression e1 to get the lock object o1 before entering into the synchronized block e2.

In fact, there may be three possibilities for the acquirement operation on the lock o1:

• The o1 is in the unlocked state with a null pointer Lock field, thus it is free to be

locked;

• The o1 is in the locked state and it is held with the Lock field pointing to the
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current thread object;

• The o1 is in the locked state but it is held by some thread other than the current

one. In this case, this thread will be blocked until the lock is released.

The last situation does not fit for any evaluation rule, in other works, it is stuck. A

deadlock condition shows up if all the parallel threads get stuck.

The E-Acquire only applies for the first case: it updates the Lock field from null

to the thread object. The “Thread” serves as a function that takes a thread number

and returns the thread object back. After acquiring the lock, we continue to evaluate

the synchronized block by E-Hold which witnesses the lock o1 is held by the current

thread 5. The lock should be released when exiting the synchronization and the rule

E-Release does reverse the operations of the E-Acquire.

Basically, the E-Re-Acquire will: (1) first make sure the lock is held by the current

thread; (2) then directly evaluate the synchronized block without any effect on the lock

(neither acquire nor release). This process matches to Java’s re-entrant monitors, but

we avoid the need to count multiple entrances because the evaluation rule drops two

monitor actions.

The rule E-Fork together with the E-Par are not thread local any more. They are

global and we need to list all the parallel threads that are currently active at runtime

by a n parallel composition e1||...||en. E-Fork applies to a thread spawn expression

fork (x) e inside of the thread i that in parallel with some others. It will be replaced

as a skip expression in its original thread to hold a place and spawn a new thread to

evaluate the e with remembering its parent thread by a field “Parent”. Therefore, the

total thread number will be increased by one.

5As mentioned before, the hold o1 do e is an internal expression that cannot be used by
programmers.



24

Evaluating the global parallel composition e1||...||en without a thread spawn is non-

deterministic: any thread may be evaluated one step further, based on which we use

the rule E-Par. Since we pick the unstructured parallelism model, we don’t have some

rule about thread join or elimination.

E-Acquire

µ(o1, Lock) = $0 Thread(p) = oT µ′ = µ[(o1, Lock) 7→ oT ]

(µ; synch o1 do e2)
p−→ (µ′; hold o1 do e2)

E-Re-Acquire

µ(o1, Lock) = Thread(p)

(µ; synch o1 do e2)
p−→ (µ; e2)

E-Hold

µ(o1, Lock) = Thread(p) (µ; e2)
p−→ (µ′; e′2)

(µ; hold o1 do e2)
p−→ (µ′; hold o1 do e′2)

E-Release
µ(o1, Lock) = oT Thread(p) = oT µ′ = µ[(o1, Lock) 7→ $0]

(µ; hold o1 do o2)
p−→ (µ′; o2)

E-Fork
µ′ = µ[(oTn+1 , Parent) 7→ oTi

]

(µ; e1||...||E [fork (x) e]||...||en)
i−→ (µ′; e1||...||E [skip]||...||en||e)

E-Par

(µ; ei)
i−→ (µ′; e′i)

(µ; e1||...||ei||...||en)
i−→ (µ′; e1||...||e′i||...||en)

Figure 3.4: Concurrency-related evaluation rules.

3.3 Summary

This chapter first provides the syntax of a simple object-orient language with some

annotations, then explains the meanings of each annotation. The operational semantics

is included to demonstrate the expression evaluation.
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Chapter 4

Permission

4.1 Permission

A permission (Π) is a token associated with some piece of state in a program and per-

missions are granted to permit certain operations [5, 6, 7]. “Fractions” are attached to

distinguish reads from writes, and the “nesting” relation depicts one piece of permis-

sion is logically nested in another piece of permission. We introduce different permission

elements according to different purposes.

4.1.1 Empty Permission

An empty permission does not grant any permission and prohibit most of the operations

in programs.

Π ::= ∅ | . . .

4.1.2 Unit Permission

Assuming we are able to access a field f of an object ρ which is currently pointing to

another object ρ′, then we need a unit permission:

Π ::= . . . | ρ.f → ρ′ | . . .

There is at most one unit permission associated with every field in the heap. A unit

permission gives right to access the state, either reading or writing. A read operation to

this field is not able to affect this unit permission, but a write may update the pointed-to



26

object to a new one ρ′′:

{ρ.f → ρ′} =⇒ some write operation =⇒ {ρ.f → ρ′′}

Property 4.1.2.1 It is not permitted to update a field value unless the corresponding

unit permission for that field is granted.

4.1.3 Compound Permission

We use the comma operation (,) to combine different permissions. A compound permis-

sion Π, Π′ is constituted from two sub-permissions and gives one all the rights associated

with either of them being compounded.

Π ::= . . . | Π, Π | . . .

It’s worth a mention that not all permissions can be combined to constitute a compound

one, for example, a unit permission ρ.f → ρ′ cannot be combined with another ρ.f → ρ′′

if the ρ′ and ρ′′ are different. In other words, they are “conflict”. We have consistency

rules in Chapter 6 to decide whether two permissions can be combined or not. Moreover,

the comma operator (,) is commutative and associative with using the empty permission

∅ as the identity.

Π, ∅ ≡ ∅, Π ≡ Π

4.1.4 Fractional Permission

Although a unit permission permits both read and write operations, it’s better to dis-

tinguish them since the two operations play different roles in multithreaded programs.

For instance, a non-synchronized write operation in one thread must “invalidate” any

access (both read and write) in its parallel threads, otherwise a data race happens.
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Our fractional permission system is intuitively good at distinguishing reads from

writes. This is one of the most important advantages over other type systems. We

build the fractional permission which scales the permission by a fraction ξ:

Π ::= . . . | ξΠ | . . .

The ξ represents a positive fraction (rational number) from zero exclusively to one

inclusively and the usage of fraction together with the compound permission gives an

elegant way to split permissions. Let’s take the below transfer for example:

Π ≡ 1/2Π, 1/2Π ≡ 1/2Π, (1/4Π, 1/4Π) ≡ 3/4Π, 1/4Π

A permission Π can be split into two fractional permissions both of which are associated

with a fraction 1/2. Then one of them split again to get two fractional permissions with

a smaller fraction (1/4). This is demonstrated in Figure 4.1 by treating the original Π

as a disk.

+ +
+

Π 1/2Π, 1/2Π 1/2Π, 1/4Π, 1/4Π 3/4Π, 1/4Π

Figure 4.1: Fractional Permission.

With the fractional permission, we use the unit permission to act as a write per-

mission, while a fractional unit permission (fractional permission for short) represents

a read permission. For example, the ρ.f → ρ′ and ξρ.f → ρ′ are the write and read

permission to access the field f of object ρ respectively.

It’s worthwhile to mention that both of the two fractional permissions 1/2ρ.f → ρ′

and 1/4ρ.f → ρ′ grant a read permission to access the ρ.f , however they need different
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counterparts to recover a write permission: the former needs a 1/2ρ.f → ρ′, while the

latter requires the 3/4ρ.f → ρ′.

Property 4.1.4.1 A unit permission acts as a write permission and it can be split into

several read permissions with the same key but different fractions. On the other side,

several read permissions with the same key are able to be combined to recover a write

permission if the sum of their fractions is one.

4.1.5 Existential Permission

Since the permission analysis is totally static, we are not able to decide the actual object

locations before the runtime. Thus, we use existential variables to represent unknown

objects. For example, if we want to say that we have a write permission to ρ.f as well

as a write permission to the field f ′ (assuming a null pointer) of its pointed-to object,

then we give a permission using an existential variable: ∃r.(ρ.f → r, r.f ′ → $0). This

is called existential permission.

Π ::= . . . | ∃r.(Π) | . . .

An existential permission can be unpacked in the standard way (using skolemization).

4.1.6 Fact and Conditional Permission

A conditional permission (Γ)?(Π) : (Π′) shows that either Π or Π′ is present depending

on whether the Γ is true or not.

Π ::= . . . | (Γ)?(Π) : (Π′) | . . .

Here, the Γ is represented by boolean formulae to show a fact which could be

• standard boolean logic: true, ¬(Γ) and Γ ∧ Γ;
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• type assertions (ρ ∈ C): ρ has the type C or its subtype;

• reference equalities (ρ = ρ): two references are pointing to the same location;

• orders between lock objects (ρ < ρ′): lock object ρ has a lower level than ρ′;

• orders between lock objects and levels (ρ < ρ′.lv or ρ > ρ′.lv): lock object ρ has a

lower (or higher) level than the level lv of the ρ′;

• nesting facts (Π ≺ ρ.f ): permission Π is nested in a unit permission for the ρ.f ;

• object type predicates p(ρ): The class invariant with regarding to a sequence of

references ρ.

Most of them are straightforward except the last two which will be discussed later. In

our system, facts are also considered as permissions.

Π ::= . . . | Γ | . . .

Given the truth value of the Γ part, a conditional permission can be “reduced” to

either its true- or false-clause. For example:

Γ, (Γ)?(Π) : (Π′) ≡ Γ, Π
¬(Γ), (Γ)?(Π) : (Π′) ≡ ¬(Γ), Π′

4.1.7 Linear Implication

A linear implication Π1 −+ Π2 indicates that one has the rights of the consequent Π2,

except for the ones of the antecedent Π1.

Π ::= . . . | Π1 −+ Π2 | . . .

In order to answer why we use this kind of permission, we introduce two concepts first:

permission nesting and carving. The nesting is one of the most important hallmarks of

our permission system.
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Definition 4.1.7.1 (Permission Nesting) A permission can be nested in a unit per-

mission and this nesting relation is expressed as a fact (formula):

Π ≺ ρ.f

Permission nesting indicates that anyone who has the nester permission also has the

nested permission.

The nesting relation basically has two functions:

• It intuitively indicates the protection relation. Since the nested permissions are

not available unless the nester permission is granted, we may consider the nester

permission as a lock to protect some critical nested permissions.

• It is able to show the encapsulation capability. The nester may be thought as

a data group [43] to hide the nested permissions which should not be directly

exposed to clients.

Assuming that the Π and ρ.f → ρ′ are the nested and nester permissions respec-

tively, then after performing a nesting:

Π, ρ.f → ρ′ ; (Π ≺ ρ.f ), ρ.f → ρ′

the original Π is “gone”, but a nesting fact is present. Actually, the “same” unit

permissions (acting as a nester) before and after the nesting operation are different.

The latter one has a “bigger size” than the former since it is “enlarged” by containing

a new nested permission. The first transfer in Figure 4.2 shows this situation.

After the nesting, the nested permission is not directly present any more. In order

to get it to perform some operations, we need to carve it out:

(Π ≺ ρ.f ), (ρ.f → ρ′) ≡ (Π ≺ ρ.f ), Π, Π −+ (ρ.f → ρ′)



31

+ +

Π, ρ.f → ρ′ (Π ≺ ρ.f ), ρ.f → ρ′ (Π ≺ ρ.f ), Π, (Π −+ ρ.f → ρ′)

Figure 4.2: Permission nesting and carving.

Definition 4.1.7.2 (Carving) A nested permission Π can be carved out from its nester

permission ρ.f → ρ′ for some ρ′ if the nesting fact Π ≺ ρ.f is present and Π hasn’t

been carved out yet.

The carving is not just a reversed nesting operation. As mentioned before, the

nester permission is “enlarged” once a nesting happens, but it cannot shrink after

being carved out the nested permission. Instead, there will be a “hole” expressed by a

linear implication form of permission: That is to say, the nesting is undoable and the

carving cannot be considered as an anti -nesting operation (see the one-way arrow in

Figure 4.2). However, there does exist an anti -carving transfer: the carved out nested

permission can be filled back into the implication form of its nester. (see the ≡ notation

in Figure 4.2).

Together with the usage of fraction, a fractional nester permission can be carved

out a fractional nested permission:

(Π ≺ ρ.f ), (ξρ.f → ρ′) ≡ (Π ≺ ρ.f ), ξΠ, ξΠ −+ (ξρ.f → ρ′)

Figure 4.3 demonstrates this situation. In the first step, a nester permission is split into

two parts, then a carving operation happens on the part with the smaller fraction.
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+ +

(Π ≺ ρ.f ), ρ.f → ρ′ (Π ≺ ρ.f ), 3/4ρ.f → ρ′, (Π ≺ ρ.f ), 3/4ρ.f → ρ′,
1/4ρ.f → ρ′ 1/4Π, 1/4Π −+ 1/4ρ.f → ρ′

Figure 4.3: Fractional carving.

4.1.8 Formal Syntax

The formal syntax of the permission type system is given in below:

object reference ρ ::= o | r
key k ::= ρ.f

fraction ξ ::= 1 | 1/2 | z
fact Γ ::= true | ¬(Γ) | Γ ∧ Γ | ρ ∈ C | ρ = ρ | Π ≺ k | p(ρ) | Γ<

order fact Γ< ::= ρ < ρ | ρ < ρ.lv | ρ > ρ.lv
permissions Π ::= ∅ | Γ | k → ρ | ξΠ | ∃r.(Π) | (Γ)?(Π) : (Π)

| Π −+ Π | Π, Π

Here, o and r are used to range literal object addresses and object reference variables

respectively.

4.2 Annotation

Annotations are attached to programs to indicate the design intent [27]. They are

non-executable and hence have no effects on the fundamental compiler and runtime

environment. Annotations are considered as high level descriptions of the low level

code, thus they may help people (both programmers and maintainers) understand the

complicated program. However, high-level annotations cannot be used to do program

analysis directly, they must be translated into some machine understandable form.

Here, we use the low-level permissions to represent annotations in the code.
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4.2.1 Pointer/Field Annotations

We have several kinds of pointer (including field) annotations: data groups, nullity,

uniqueness, immutable, lock level, guards.

Data Groups

A “data group” is modeled by a field with an uninteresting type. In our system, we

represent it by a special field which is always null. And we use the permission nesting

to simulate the abstraction of data groups, where permissions for fields in a data group

are nested in the permission for the data group. In addition, we define an All data

group in the Object class that will be inherited by every class. Any field or data group

that are not explicitly annotated by an “in G” will be implicitly “in All” by default.

A code segment in Figure 4.4 shows the usage of data groups. A Location data

group is defined in the Point class. It includes two fields x and y, and is further included

by another data group Appearance.

class Point {
group Appearance;
group Location in Appearance;
int x in Location;
int y in Location;
...

class Color3DPoint extends Point {
group Color in Appearance;
int color in Color;
int z in Location;
...

Figure 4.4: Code segment: data groups.

The permission nesting will be used to model the “in” relation either between a

field and a data group or between two data groups. There are four permission nesting

facts for fields x and y, data groups Location and Appearance respectively. Assuming

the rthis is an object variable for the self object, then

rthis.x→ int ≺ rthis.Location,
rthis.y→ int ≺ rthis.Location,

rthis.Location→ $0 ≺ rthis.Appearance,
rthis.Appearance→ $0 ≺ rthis.All
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Any subclass may extend its superclass by adding new fields and data groups as

well, but the existent nesting facts must be inherited. For instance, the subclass is

not allowed to make the data groups that defined at its superclass “in” a new data

group of its own. The Color3DPoint is a subclass of the Point class with several valid

data group annotations. It not only adds a new field z into the existent Location data

group, but also defines a new data group Color which is further included by the existent

Appearance from its superclass. Besides the nesting facts in its superclass Point, the

additional nesting facts of Color3DPoint class include:

rthis.z→ int ≺ rthis.Location,
rthis.color→ int ≺ rthis.Color,

rthis.Color→ $0 ≺ rthis.Appearance

Nullity

A “nonnull” reference variable is simply expressed by ¬(r = $0), while the “maybenull”

annotation will be translated as a conditional permission: (r = $0)?(Π1) : (Π2) where

the Π1 and Π2 respectively correspond to the two possibilities whether r is null or not.

A “nonnull” field cannot be truly non-null until the constructor call ends. A receiver

is always assumed non-null.

Uniqueness

As mentioned before, the permission type may use an existential variable to represent

the pointed-to object. In general, this pointer will be packaged with facts about or

permission to access some or all of the pointed-to object’s fields. Different annotations

are expressed by packaging different permissions and/or facts.

With linear existentials, it’s easy to use permission to store unique pointers in shared

state: a unique pointer is one which is packaged along with the permission to access

the state pointed to. This representation seems a little weaker than the usual sense
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of uniqueness in which there are no other pointers to the state in the store, but our

permission treatment is safe enough to simulate the uniqueness since other possible

references will not be granted permission to access it. The problem is not the existence

of aliasing pointers, but rather the access of the state through these aliasing pointers.

class Rectangle {
unique Point tl;
unique Point br;
shared String name;
...

void setPosition( unique Point tl,
unique Point br, shared String name ) {
this.tl = tl;
this.br = br;
this.name = name;

}

Figure 4.5: Code segment: uniqueness.

For example, we use three existential permissions to represent the two unique fields

and one shared field in Figure 4.5 respectively:

∃r.(rthis.tl→ r, (¬(r = $0))?(r.All→ $0) : (∅))
∃r.(rthis.br→ r, (¬(r = $0))?(r.All→ $0) : (∅))

∃r.(rthis.name→ r, (¬(r = $0))?(r.All→ $0 ≺ r.Prot) : (∅))

The variable rthis has the same meaning as usual. All classes inherit two distinguished

data groups from Object: (1) All contains all fields (data groups) of the object that

are not annotated by “final”, “in” or “guarded by”; (2) Prot contains all state “pro-

tected” by the object: those state can only be accessed when the object is being locked.

First, rthis.tl → r is the unit permission to write access the field tl which is

currently a reference pointing to r, where the r is an existential variable and it could

be either null or non-null. If the r is not null, then the unit permission r.All → $0 is

also presented because the tl is annotated “unique” and there is no more permissions

available for any other pointers (if any) that also refer to the r. In other words, if we

have the unit permission for the rthis.tl, we will additional have the unit permission

for the All data group of its pointed-to object (if non-null).

For a “shared” pointer, such as the name field, the permission for the All data
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group of its pointed-to object (if non-null) is nested in the Prot data group of its own.

Intuitively, a shared pointer is one whose pointed-to object’s state may be accessed from

references other than the current one, therefore neither the shared pointer itself nor any

other pointers is good enough to take the responsibility for its pointed-to object alone.

That is, the pointed-to object has to be responsible to itself: any access to its state

should be in a synchronized block holding the object itself.

The fundamental principle is: wherever you get some permission to access a unique

pointer, then you have the same amount (fractional) of permission to access the state

of its pointed to object (assuming non-null), because the uniqueness property excludes

other references to that pointed-to object.

Parameter and return values annotated “unique” are handled in a simpler way: the

entire permission is passed in but not returned (for a parameter), or only returned (for

a return value).

The uniqueness annotations attached to the parameters are handled in the similar

way. For example, the parameters of method setPosition in Figure 4.5 have their

permission representation in these forms:

(¬(rtl = $0))?(rtl.All→ $0) : (∅),
(¬(rbr = $0))?(rbr.All→ $0) : (∅),

(¬(rname = $0))?(rname.All→ $0 ≺ rname.Prot) : (∅)
Here, the rtl, rbr and rname are the variables for the formal parameters tl, br and name

respectively.

Immutable and Lock level

An immutable object may never be written and an immutable reference points to an

immutable object.

All immutable state has a fraction that is nested into a special globally known 1

1The $0 is used to express the globally known location.
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“immutable” group (r.All → $0 ≺$0.Immutable). Implicitly, every method is passed

permission for a (small) fraction of this field. Thus, we do not need to declare method

effects for reading immutable state. “Final” fields can be modeled by nesting the field

permission into the immutable group. For example, the permission for a final field f is:

∃r.(zrthis.f → r ≺ $0.Immutable)

Lock level annotations for fields include “lessThan” and “greaterThan” which can

only be attached to a “final” and “nonnull” field since its pointed-to object may

act as a lock and we don’t allow the mutation. The target of these two annotations is

restricted to be a level defined in the same class. Levels are invisible to programmers and

they are used as intermediates to connect and show the partial order among different

locks.

The code segment in Figure 4.6 shows the checking object is lower than the level

lv, while savings is higher than lv, and both of them are non-null and final fields.

Furthermore, with the help of lv, it’s easy to deduce that the object pointed to by

checking has a lower level than the one pointed to by savings.

To prevent deadlocks, it is required to obtain locks in an ascending order. This is

similar as the deadlock detection in Boyapati’s ownership type system [10], but we only

assign the partial order among locks, thus there is no particular level associated to lock

objects.

class CombinedAccount {
final nonnull Account checking < lv;
final nonnull Account savings > lv;
Level lv;
...

Figure 4.6: Code segment: order level.
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The permission representation for the checking and savings fields are:

∃r.(z1rthis.checking→ r,¬(r = $0), r < rthis.lv) ≺ $0.Immutable
∃r.(z2rthis.savings→ r,¬(r = $0), r > rthis.lv) ≺ $0.Immutable

Guards

Following annotations from Flanagan and others for fields [16, 13, 17], we use a field

annotation “guarded by guard” to show any access (both read and write) to that field

should be protected by the guard.

class Node<g> {
Node<g> next guarded_by g;
...

class LinkList {
Node<this> head guarded_by this;
...

Figure 4.7: Code segment: guards.

Figure 4.7 shows a code segment for the class Node which is parameterized by a

formal guard object g. This is called ghost by Flanagan [13]. As mentioned before,

the permission nesting is intuitively good at expressing a protection relation. Thus, we

build a fact here to show that the unit permission to access the next field is nested

inside of the Prot data group of its guard object g:

∃r.(rthis.next→ r) ≺ rg.Prot

The rg is used as a variable for the guard object g. Within this nesting fact, any access

to this field (either read or write) should be in a synchronized block holding the rg.

Similarly, the permission representation for the “guarded by” annotated head field

in LinkList class is:

∃r.(rthis.head→ r) ≺ rthis.Prot

4.2.2 Mixture of multiple pointer/field annotations

We have given each pointer/field annotation a meaning by its permission representation

separately. But if more than one annotations are attached to a single field, then we need
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to compose their permission representation from different annotations. Figure 4.1 and

4.2 provide two tables listing some annotated fields and their permission representation.

The rthis is used as the self object variable as usual and g are a sequence of the

formal guards of the class and they are expressed by a sequence of variables rg in the

permission. The C(...) is used as an invariant for the class C which is treated as a

conjunction of some facts that represent the class properties with referring to the self

object variable rthis and some guard variables rg. We will reach the class invariant issue

in next section.

In order to reduce the number of annotations needed in many common cases, we

provide some well-chosen default annotations as well as some restrictions:

• References without uniqueness annotations are considered unique.

• References without nullity annotations are considered maybenull.

• Neither uniqueness nor nullity annotations are used for groups.

• Fields annotated with “final” won’t use the “guarded by” or “in” annotations

any more.

4.2.3 Class Invariants

Field annotations indicate the protection mechanism for each field access and maybe

its pointed-to object as well. These conditions and annotations imposed on fields are

called unary field invariants because they are object instance invariants that involve

one field at a time. They are handled by the permission nesting: field and data group

permissions (except Prot) are always nested in some location. They may express the

nullity, the enclosed permission (if any) as well as the protection mechanism.
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We combine all the field and group invariants in one class as a named predicate

which consists of a conjunction of nesting facts and a type assertion. This is called

class invariant and it has a form of C(rthis, rg), where rthis is the self object variable

and rg is a sequence of object variables for the formal parameters used as guards in the

class definition.

class Node<g> {
Node<g> next guarded_by g;
shared Object datum;
......

class LinkList {
Node<this> head guarded_by this;
......

Figure 4.8: Code segment: class invariant

Figure 4.8 shows an annotated code segment for LinkList and Node classes including

all their fields. By combining annotations (the next and head are unique pointers by

default), the unary field invariants for the next and datum fields in class Node are:

Γnext = ∃r.(rthis.next→ r, (¬(r = $0))?(r.All→ $0, Node(r, rg)) : (∅)) ≺ rg.Prot
Γdatum = ∃r.(rthis.datum→ r, (¬(r = $0))?(r.All→ $0 ≺ r.Prot, Object(r)) : (∅))

≺ rthis.All

Both Node(r, rg) and Object(r) showing above are the class invariants with referring

the variables in the parentheses. Based on these two unary field invariants, the class

invariant for Node is defined as:

Node(rthis, rg) = Γnext ∧ Γdatum ∧ rthis ∈ Node

The last conjunct is the static type assertion for the self object.

The class invariant of LinkList has a similar structure except it only depends on

the rthis since it does not have any formal class parameter.

LinkList(rthis) = Γhead ∧ rthis ∈ LinkList

where the unary field invariant Γhead is:

Γhead = ∃r.(rthis.head→ r, (¬(r = $0))?(r.All→ $0, Node(r, rthis)) : (∅)) ≺ rthis.Prot
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Thread-Local

Large multithreaded programs typically have sections of code that operate on data that

is not shared across multiple threads. In particular some objects are only accessible by

the thread that create them. In this situation, we may use a “thread local” modifier

for this class, such that any access to its fields should only be in the thread that creates

this instance. Objects used in this fashion require no synchronization and should not

need to have locks guarding their fields.

rthis.All→ $0 ≺ rthisThread.Prot

We use the above nesting fact to show that the state of this thead local object is

protected by the rthisThread which is a variable for the current thread. Here, we require

that the object is created in the current thread, where the unit permission to the Prot

data group of the thread object is automatically granted when this thread starts.

Raw and Cooked

The class invariant is an abstract representation indicating instances of this class should

hold some properties. However, these properties may not be true unless the object is

well established. For example, a field annotated nonnull may not actually be a non-

null pointer before the end of its constructor call. Especially, our evaluation always

treats a regular object allocation as a pure object allocation followed a constructor call.

Right after the pure object allocation, all of the reference fields are null pointers (see

the evaluation rule E-New in the previous chapter). Therefore, it’s necessary to mark

whether or not the object is well established or not.

The class invariant must be established by the constructor which is modeled by a

method that takes the permissions for each field individually and returns the permis-
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sion for the All data group after establishing the class invariant for its own and all

superclasses. The permission to All and the class invariant jointly imply that all fields

are consistent with their type.

It’s forced that the class invariant can only be established when the constructor

call is finished. But what happens if there is some other method calls (directly or

indirectly) inside of the constructor body and pass a reference whose class invariant it

not yet established? Therefore, it may cause trouble if one always assumes that class

invariants are true. Particularly, if the requirement on the invariant is an explicit part

of the method signature, then the method cannot be overridden in a subclass wanting

a strong invariant.

Borrowed from Fähndrich and Leino [44], we use a raw type. Instead of treating

“raw” as a primitive, we express it (or rather its inverse “cooked”) using permissions.

A “cooked” pointer is one for which the invariant is true for every dynamic type that

the object possesses:

cooked(rthis) = (rthis ∈ C1)?(∃rg.(C1(rthis, rg))) : ((rthis ∈ C2)?(∃rg.(C2(rthis, rg))) : (. . .))

where rthis ∈ Ci indicates that object rthis is of class Ci or one of its subclasses and

Ci(rthis, rg) is the class invariant for class Ci with referring the self variable rthis and

a sequence of guard variables rg. The body of the cooked predicate ranges over all

classes in the system that have at most this amount of formal guard parameters. Thus,

a method can require its receiver to be “cooked” and permit an overriding method

to use the same predicate to provide a stronger invariant. A reference with a raw[C]

annotation only guarantees those from C up the class hierarchy. Therefore,

r ∈ C, cooked(r) =⇒ C(r, rg) for some guard variables rg

Once the invariant is established after a constructor call, it can be broken by carving
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a field out of some data group and assigning it a value that does not consistent with the

requirement of the invariant. But then the data group permission cannot be restored

until the required unary field invariant is restored.

4.2.4 Method Annotations

Method annotations indicate the requirements and effects of the method body. They

include not only the annotations for parameters and the receiver, but also the effects

and lock usage that take place in the body. All the method annotations will be trans-

lated into their permission representation. From the caller side, it must grant these

permissions, while on the callee side, it assumes these permissions are present and re-

turns some of them back. Roughly, there are three kinds of method annotations in our

system.

Effects

The typical method effects are read and write, and their target should be a sequence of

e.f . It’s useless to mention variables are read or written since they are always accessible

but never updatable 2.

A method is passed permissions to enable it to access state. For example, if a

method has an annotation “writes (e.f )”, then there may be a write access to the

e.f in the method body, thus a unit permission for the e.f must be granted to enable

that possible write.

writes this.x
void setX( int newX ) {
x = newX;

}

reads this.x
int getX() {
x;

}

Figure 4.9: Code segment: effects.

2We don’t have any expression to assign variables.
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There are code examples for the usage of effect annotations in Figure 4.9. The setX

method needs a rthis.x → int to update the rthis.x field, while the getX method only

needs a fractional permission zrthis.x → int where the z is just a fraction variable

which is only required to be bigger than zero.

Lock Usage

Besides effects, methods are required to provide the lock annotations. There are two

different lock annotations “requires” and “uses”, where the former (also used by

Boyapati and Flanagan et al. [9, 13]) shows that the lock should already be held before

the method call while the latter indicates that the method body will try to acquire

the lock by itself. The targets of “requires” and “uses” are restricted to: (1) the

self object (this) or its field (this.f ), (2) formal guard objects (g) from the class

definition.

How does the “requires (lock)” affect the permission system? At first, we know

this annotation indicates that the method call should be inside of a synchronized block

holding the lock. Then the permission system indicates that the unit permission for the

Prot data group of the lock object is only available inside of the synchronized block.

Combining these two, the granted permission for this annotation is rlock.Prot→ $0.

From the permission’s point of view, “requires (lock)” equals to “writes (lock.Prot)”,

thus it may also be considered as a write effect although the write operation to this

data group can never happen. But certain write operations may need corresponding

write permissions which are nested inside of the lock.Prot location. Therefore, once

the rlock.Prot → $0 is granted, all its nested permissions are available. Let’s take the

deposit method in Figure 4.10 for example, the “requires (this)” basically indi-

cates that the rthis.Prot → $0 is available at the method entry, but what we actually
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need is the write permission to update the this.balance field. Since the balance

field is annotated by “guarded by this”, its write permission is nested inside of the

rthis.Prot. By the permission carving, the write permission to the balance field is

available consequently. The detailed permission checking is given in next chapter.

class Account {
int balance guarded_by this;
...
void deposit( int x ) requires (this)
{ balance = balance + x; }
...

class LinkList {
...
void insert( shared Object d ) uses (this)
{ sync this do {...} }
...

Figure 4.10: Code segment: lock usages

On the contrary, uses (lock) only shows a possible lock acquisition inside of the

method body. It does nothing with method effect, but the lock ordering. As mentioned

before, the lock acquirements should be in an ascending order. This requirement forces

the lock to have a higher level than any locks that have already been held, that is, the

lock should be at least the level of the rholding that passed into this method entry. Here,

the lock could be the same as or even a lower level than rholding, in which case the target

lock has already been held before the method entry and the synchronization for it will

be reentrant. We use a conditional permission to represent these possibilities:

(rholding < rlock)?(∅) : (rlock.All→ $0)

Either the rlock has a higher level than the rholding, or the rlock is a reentrant lock in the

method body, thus the rlock.Prot→ $0 is granted at the method entry.

Moreover, the targets of “requires” and “uses” should be non-null objects, and if

it is the form of this.f , we additional require to have a read permission for that field.

If the “uses” annotation has multiple targets, it’s possible that these locks are

acquired in arbitrary order. This is unsafe, since a deadlock condition may happen.
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We want to control the sequence of lock acquisition and force them to be an ascending

order. This design intent may be expressed as a method annotation: “lock<lock′”, such

that the former cannot be acquired when the latter one is held already. It is represented

as a permission fact rlock < rlock′ , where the rlock and rlock are the variables for the two

lock objects respectively.

In particular, if the “uses (lock)” is attached to a method as well as “holdingLock <

lock”, then it’s not necessary to worry whether the lock could be a reentrant lock.

Therefore, a permission representation rholding < rlock is enough and we don’t use the

complicated conditional form mentioned above. Actually, this result is achieved by a

transformation:

(rholding < rlock)?(∅) : (rlock.All→ $0), rholding < rlock V rholding < rlock

From Effects

Effect annotations indicate the required permissions to execute certain operations in

the method body and they are returned when the method returns. Effects may be in

terms of parameters, of the receiver. In some cases, the return value may be annotated

as having acquired permissions “from” some of the method effects. When this happens,

this kind of permissions will be carved out from the effect permission, and thus the

method effects are not returned until the return value is no longer needed.

For example, we make a mutable top-left Point object available to the client in

this manner in Figure 4.11. This code returns a mutable point, but the permission to

mutate the point is made available only by temporarily making the objects location

inaccessible (the permission to this.Location is rendered inactive).

rret.All→ $0, rret.All→ $0 −+ rthis.Location→ $0
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class Rectangle {
Point tl in Location;
...
from (this.Location)
Point getTopLeft() writes (this.Location) {
......

Figure 4.11: Code segment: from.

4.2.5 Method Type

The annotations attached to method definitions can be considered as an abstract spec-

ification of the requirements and effects of the method body. Suppose a method has a

percondition and a postcondition, then the method is considered as a mapping:

precondition → postcondition

In our permission system, method annotations will be translated into permissions to

express the pre and postcondition. We assign each method a permission type:

(∀∆; Πin)
rholding−−−−→ (∃∆′; Πout)

where Πin and Πout are the input and output permission respectively. All the variables

used in Πin as well as the rholding are bounded in ∆, while Πout may use some new

variables in ∆′. The rholding is the most recent lock variable that is held at the method

entry.

The input permission Πin indicates the required permissions to permit the body

expression, where the output permission Πout displays the retained permissions after a

method invocation.

4.2.6 Example 1: Account and CombinedAccount

Figure 4.12 shows two class definitions with annotations (most of them have been men-

tioned already).
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class Account {
int balance guarded_by this;

Account() {
balance = 0;

}
int balance()
reads (balance) {
balance;

}
void deposit( int x )
requires (this) {
balance = balance + x;

}
void withdraw( int x )
requires (this) {
balance = balance - x;

}
}

class CombinedAccount {
final nonnull Account checking < lv;
final nonnull Account savings > lv;
Level lv;

CombinedAccount(nonnull Account s,
nonnull Account c) {

savings = s; checking = c;
}
void savings2checking(int x)
uses (this.checking, this.savings) {
synch checking do {
synch savings do {

savings.withdraw( x );
checking.deposit( x ); } }

}
void double_savings(int x) uses (this.savings)
holdingLock < this.savings {
let s = savings in {
fork (s) {synch s do s.deposit(x);};
fork (s) {synch s do s.deposit(x);}; }

}
......

Figure 4.12: Code: Account and CombinedAccount.

Account class has a balance field which is “guarded by” the self object and its

class invariant is:

Account(rthis) = Γbalance ∧ rthis ∈ Account

Γbalance = rthis.balance→ int ≺ rthis.Prot

CombinedAccount class has two fields: savings and checking, both of which are

“final” and they are “nonnull” after the constructor call. As mentioned before, they

are also “unique” by default.

CombinedAccount(rthis) = Γsavings ∧ Γchecking ∧ rthis ∈ CombinedAccount

Γchecking = ∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv)
≺ $0.Immutable

Γsavings = ∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)
≺ $0.Immutable

Figure 4.13 gives the permission represented method types for balance and deposit.

The balance method in Account class has a “reads” annotation, then it should be
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granted a fractional permission when this method starts and be returned after it ends.

The additional named predicate Account(rthis) is to indicate that the class invariant is

held with referring to the self object variable rthis (no formal guard parameters for this

class).

Methods deposit and withdraw have the same annotation “requires (this)”

which means both of them can only be called inside of a synchronized block hold-

ing the lock this. They have the same method type in permission. Although the

“requires this” explicitly indicates that any call to the deposit method must be in

a synchronized block holding the rthis, but we cannot guarantee that the recent holding

lock for this call is just the rthis, therefore we still keep using the rholding variable.

balance deposit(withdraw)

∆; {rthis, rholding, z} ;

Πin

{
zrthis.balance→ int,
Account(rthis)

-> rholding

∆′; {rret} ;

Πout


zrthis.balance→ int,
Account(rthis),
rret = int

∆; {rthis, rholding, rx} ;

Πin


rthis.Prot→ $0,
Account(rthis),
rx = int

-> rholding

∆′; {rret} ;

Πout


rthis.Prot→ $0,
Account(rthis),
rret = $0

Figure 4.13: Method type for class Account: balance and deposit(withdraw).

Method savings2checking in the class CombinedAccount has some different method

annotations. Its permission type is in Figure 4.14. As mentioned before, every method

is implicitly passed permission for a small fraction of the $0.Immutable (which is inten-

tionally omitted in other methods to save space). In order to get the permissions for the

“uses ” annotation using two “final” fields, we have to carve out the corresponding

permissions for the two fields from the $0.Immutable and unpack their existential forms
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to make the rchecking and rsavings explicit.

∆; {rthis, rx, rholding, z1, z2} ;

Πin



z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,
Account(rchecking), rchecking < rthis.lv,
z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,
Account(rsavings), rsavings > rthis.lv,
(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),
∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))
−+ $0.Immutable→ $0,
(rholding < rchecking)?(∅) : (rchecking.Prot→ $0),
(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),
CombinedAccount(rthis),
rx = int

-> rholding

∆′; {rret} ;

Πout



z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,
Account(rchecking), rchecking < rthis.lv,
z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,
Account(rsavings), rsavings > rthis.lv,
(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),
∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))
−+ $0.Immutable→ $0,
(rholding < rchecking)?(∅) : (rchecking.Prot→ $0),
(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),
CombinedAccount(rthis),
rret = $0

Figure 4.14: Method type for class CombinedAccount: savings2checking.

4.2.7 Example 2: LinkList

Figure 4.15 gives the class definition for class LinkList and Node. The invariants

for these two classes have already been given in previous sections. Here, we instead

enumerate some permission types for their methods.

Figure 4.16 shows a permission type for the setNext method. The rn represents
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class Node<g> {
Node<g> next guarded_by g;
shared Object datum;

void setNext( Node<g> n )
writes (this.next)
{ next = n; }

from g Node<g> getNext()
requires g
{ next; }
......

class LinkList {
Node<this> head guarded_by this;

void insert( shared Object d )
uses (this)
{ synch this do {

let newNode = new Node<this>(d) in {
newNode.setNext( head );
head = newNode; } }

}
......

Figure 4.15: Code: LinkList and Node

the variable for the formal parameter n. Since the parameter n is a unique pointer, a

unit permission for its All data group is included if the n is non-null. The “writes”

annotation is translated as a unit permission packing the corresponding for its pointed-

to object using an existential form. The class invariant for the receiver is included by

default. All of them will also show up in the output permission except for the permission

of the unique parameter.

∆;
{
rthis, rg, rn, rholding

}
;

Πin


(¬(rn = $0))?(Node(rn, rg), rn.All→ $0) : (∅),
∃r.(rthis.next→ r, (¬(r = $0))?(Node(r, rg), r.All→ $0) : (∅)),
Node(rthis, rg)

-> rholding

∆′; {rret} ;

Πout


∃r.(rthis.next→ r, (¬(r = $0))?(Node(r, rg), r.All→ $0) : (∅)),
Node(rthis, rg),
rret = $0

Figure 4.16: Method type for class Node: setNext.

Figure 4.17 gives the permission type for method getNext which “requires” the g

to be held before this method entry. Thus the unit permission for rg.Prot is granted as

well as the class invariant for the self object. Furthermore, this method uses a “from”

to annotate the returned value. This indicates the rret.All→ $0 (if the rret is not null)
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is carved out from the rg.Prot→ $0.

∆; {rthis} ;

Πin

{
rg.Prot→ $0,
Node(rthis, rg)

-> rg
∆′; {rret} ;

Πout


(¬(rret = $0))?(Node(rret, rg), rret.All→ $0) : (∅),
(¬(rret = $0))?(Node(rret, rg), rret.All→ $0) : (∅) −+ rg.Prot→ $0,
Node(rthis, rg)

Figure 4.17: Method type for class Node: getNext.

Figure 4.18 shows a method type for the insert in class LinkList. Besides the class

invariant with referring to the rthis, this method additionally has a “shared” parameter,

thus some permissions about that parameter are given as well. The “uses (this)”

basically grants the conditional permission (rholding < rthis)?(∅) : (rthis.Prot → $0) as

mentioned before.

∆; {rthis, rd, rholding} ;

Πin


(rholding < rthis)?(∅) : (rthis.Prot→ $0),
(¬(rd = $0))?(rd.All→ $0 ≺ rd.Prot, Object(rd)) : (∅),
LinkList(rthis)

-> rholding

∆′; {rret} ;

Πout


(rholding < rthis)?(∅) : (rthis.Prot→ $0),
LinkList(rthis),
rret = $0

Figure 4.18: Method type for class LinkList: insert.

4.3 Summary

This chapter first introduce the syntax of permissions. The nesting and fractional are

the most important properties. Then we show how to translate the design intent ex-

pressed by high-level annotations into their low-level permission representation. Fields
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may be attached some annotations which indicate the protection mechanism for itself

as well as the pointed-to object. The permission representation for each field is a unary

field invariant and the conjunction of all unary field invariants becomes a class invariant.

Method annotations include pointer annotations for its receiver and formal parameters,

class invariant for the receiver, effect and lock usage annotations. With these annota-

tions, any method could be treated as a mapping from an input permission to an output

permission. From the caller’s side, the input permission of a method is the required

permission to make a call while the output permission is the retained permission after

the method call. From the callee’s side, the input permission is the granted permission

to its body, while the output permission is required to return to its caller.
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Table 4.1: Annotations’ permission representation.
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Table 4.2: Annotations’ permission representation (Cont.).
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Chapter 5

Permission Type Checking

From the previous chapter, method annotations as well as field (pointer) annota-

tions can be translated into a method type in permission (∀∆; Πin)
rholding−−−−→ (∃∆′; Πout).

The Πin acts as the granted permissions to the method body, while Πout is the result

permissions when the method ends.

Given an environment E and an expression e nested most recently in a synchronized

block holding lock ρL, if the e is not a parallel composition and can be permission

checked using E, then it has a permission type τ with the environment being changed

to E ′. This process is given as a judgement:

E `ρL
e ⇓ τ a E ′

An environment is composed by two parts: (1) a type context ∆ which is a set of

object reference variables r and fraction variables z; (2) the granted permission Π. For

a well-formed environment E = (∆; Π), we require that all free variables used in Π are

in ∆ (FV (Π) ⊆ ∆). For brevity purposes, this restriction is left implicit.

5.1 Permission Typing Rules

5.1.1 Conditional

For a conditional expression, we first check its condition part and get two permission

type ptr(ρ1) and ptr(ρ2) for two expression e1 and e2 respectively. Then we separately

permission check different branches with additional facts indicating whether or not

ρ1 = ρ2. The two different output permission Π3 and Π4 together with two different

permission types respectively will be combined using a conditional permission form.
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If
∆; Π `ρL

e1 ⇓ ptr(ρ1) a ∆1; Π1 `ρL
e2 ⇓ ptr(ρ2) a ∆2; Π2

∆2; ρ1 = ρ2, Π2 `ρL
e3 ⇓ ptr(ρ3) a ∆3; Π3

∆2;¬(ρ1 = ρ2), Π2 `ρL
e4 ⇓ ptr(ρ4) a ∆4; Π4

r fresh Π′ = (ρ1 = ρ2)?(r = ρ3, Π3) : (r = ρ4, Π4)

∆; Π `ρL
if e1==e2 then e3 else e4 ⇓ ptr(r) a ∆3 ∪∆4; Π

′

Figure 5.1: Permission type rules: Conditional

5.1.2 Local

Local
∆; Π `ρL

e1 ⇓ ptr(ρ1) a ∆′; Π′

rx 6∈ ∆′ {rx} ∪∆′; ρ1 = rx, Π
′ `ρL

e2 ⇓ ptr(ρ2) a ∆′′; Π′′

∆; Π `ρL
let x=e1 in e2 ⇓ ptr([rx 7→ ρ1]ρ2) a ∆′′ \ {rx} ; [rx 7→ ρ1]Π

′′

Figure 5.2: Permission type rules: Local

Local variable declaration will introduce a fresh variable rx in permissions for the

body e2 such that a fact ρ1 = rx is added indicating the rx is an alias for the object

that pointed to by e1. Since the scope of the local variable is only the body e2, we need

to substitute it back after permission checking the e2.

5.1.3 Read and Write

Read
∆; Π `ρL

e ⇓ ptr(ρ) a ∆′; Π′ Π′ = ξρ.f → ρf , Π′′

∆; Π `ρL
e.f ⇓ ptr(ρf ) a ∆′; Π′

Write
∆; Π `ρL

e1 ⇓ ptr(ρ1) a ∆′; Π′ `ρL
e2 ⇓ ptr(ρ2) a ∆′′; Π′′ Π′′ = ρ1.f → ρf , Π′′′

∆; Π `ρL
e1.f =e2 ⇓ ptr(ρ2) a ∆′′; ρ1.f → ρ2, Π

′′′

Figure 5.3: Permission type rules: Read and Write



58

For any read access to a field e.f , we first permission check the expression e to get

a reference to the ρ object as well as an output permission Π′. Then we require that

the output permission Π′ to include a fractional permission to that field expressed by

ξρ.f → ρf for some ρf . This also works to avoid the null pointer exception: if the ρ is

$0, then there is no way for the Π′ to include a fractional permission for ρ.f .

In order to update a field, we must have a write permission granted to that field.

That is the reason we require the Π′′, which is the output permission after checking the

e1 and e2 in turn, to include a unit permission for that field access. It is expressed by

a requirement above the line: Π′′ = ρ1.f → ρf , Π′′′ in the rule Write. Furthermore,

the unit permission is updated to have a different pointed-to object (ρ2) after this

assignment. The permission type for the whole field assignment will be the same one as

its right hand side. Similar as before, the null pointer exception for the field reference

e1.f is avoidable.

5.1.4 New

New
r fresh ∀i ∈ [1..n].f i ∈ fields(C) \ {Prot}

∆; Π `ρL
new C ⇓ ptr(r) a {r} ∪∆;¬(r = $0), r ∈ C, r.f i → $0, Π

Figure 5.4: Permission type rules: New

We assume there is unlimited memory that can be used to allocate objects. For a

pure allocation expression, we use the rule New. First, a fresh variable r is picked to

represent the reference of the new allocated object. Then all its fields and data groups

(except the Prot) are to be initialized as null pointers with presenting unit permissions

for them. At last, a type assertion r ∈ C and a non-null property for r are attached
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to the output permission as well. The reason not to include a unit permission for the

Prot data group is that it is not granted by an allocation, but a synchronization.

5.1.5 Synchronization and Hold

Reentrant
∆; Π `ρL

e1 ⇓ ptr(ρ1) a ∆′; Π′

Π′ = ρ1.Prot→ $0, Π′
1 ∆′; Π′ `ρL

e2 ⇓ ptr(ρ2) a ∆′′; Π′′

∆; Π `ρL
synch e1 do e2 ⇓ ptr(ρ2) a ∆′′; Π′′

Synch
∆; Π `ρL

e1 ⇓ ptr(ρ1) a ∆′; Π′

Π′ = ρL < ρ1, Π
′
2 ∆′; ρ1.Prot→ $0, Π′ `ρ1 e2 ⇓ ptr(ρ2) a ∆′′; ρ1.Prot→ $0, Π′′

∆; Π `ρL
synch e1 do e2 ⇓ ptr(ρ2) a ∆′′; Π′′

Hold
∆; Π `o1 e2 ⇓ ptr(ρ2) a ∆′′; Π′

∆; Π `o1 hold o1 do e2 ⇓ ptr(ρ2) a ∆′′; Π′

Figure 5.5: Permission type rules: Synchronization

For a synchronization expression, we need to permission check the lock expression

e1 to get an object reference ρ1 first. Then there are two possibilities:

• This lock has already been held expressed by Π′ = ρ1.Prot→ $0, Π′
1, then this is

a reentrant lock using rule Reentrant. In this case, the lock acquirement is not

needed. We directly permission check the synchronized block using the output

permissions from checking the lock expression and the most recent holding lock

is kept.

• If the above case does not apply, then we need to make sure that a proper order

between the current holding lock and the acquiring lock (ρL < ρ1) exists, since

it’s forced to acquire locks in an ascending order to avoid deadlocks. If it does,
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then the rule Synch applies. We additionally attach a unit permission for the

Prot data group of the acquired lock to check the synchronized block as well as

updating its surrounding lock.

For a non-reentrant lock acquirement, the rule Synch guarantees that: the permis-

sion ρ1.Prot→ $0 as well as the permissions protected by the lock (they are nested in

ρ1.Prot) is not available unless the ρ1 is held. The hold expression is an internal expres-

sion and the rule Hold only ensures that the surrounding lock for a hold expression is

the same object explicitly presented in the hold expression.

5.1.6 Fork and Sequence

Fork
Π = Π1, Π2 rnewThread fresh

x ∈ ∆ ∆; Π2, rnewThread.Prot→ $0 `rnewThread
e ⇓ ptr(ρ) a ∆′; Π′

2

∆; Π `ρL
fork (x) e ⇓ ptr($0) a ∆ ∪∆′; Π1

Seq

∆; Π `ρL
e1 ⇓ ptr(ρ1) a ∆′; Π′ `ρL

e2 ⇓ ptr(ρ2) a ∆′′; Π′′

∆; Π `ρL
e1;e2 ⇓ ptr(ρ2) a ∆′′; Π′′

Figure 5.6: Permission type rules: Fork and Seq

In order to permission check a spawn expression fork (x) e, we need to split the

input permission and flow away some part (Π2) to check the expression e in a new

spawn thread as well as remaining the rest (Π1) in the current thread. In addition,

since the e will be evaluated in a new thread, its surrounding lock will implicitly be the

new thread object. It is similar as treating the e as a synchronized block with holding

the new thread object acting as a lock. Any permission that is thread local will be

available by carving it out from the unit permission for the Prot data group of the
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thread object. We use a fresh variable rnewThread to represent the new spawn thread and

make the rnewThread.Prot→ $0 available at the beginning.

The rule Seq applies to a sequential expression e1;e2. The two expressions are

permission checked in turn, such that the output permission after checking the former

becomes the input permission for the latter. The permission type for the e1 is dropped,

while the permission type for the e2 also works for the whole sequential expression.

5.1.7 Call and Dispatch

Dispatch
∆; Π `ρL

e0 ⇓ ptr(ρ0) a ∆0; Π0

Π0 = ρ0 ∈ C, Π′
0 ∆; Π `ρL

e0.C#m(e1, ..., en) ⇓ ptr(r) a ∆′; Π′

∆; Π `ρL
e0.m(e1, ..., en) ⇓ ptr(r) a ∆′; Π′

Call
∆; Π `ρL

e0 ⇓ ptr(ρ0) a E0 `ρL
e1 ⇓ ptr(ρ1) a . . . `ρL

en ⇓ ptr(ρn) a En

E0 = ∆0; ρ0 ∈ C, Π0 En = ∆n; Πn

mbody(C,m) = (x∗, e, ∀∆′
0; Π

′
0

rholding−−−−→ ∃∆′′
0; Π

′′) σ1 : ∆′
0 → ∆n ∆′ fresh

σ2 : ∆′ → ∆′′
0 Π′′ = σ2Π

′′
0 Πn = σ1Π

′
0, Π

′ ∀i ∈ [1..n].σ1(rxi
) = ρi

σ1(rthis) = ρ0 σ1(rholding) = ρL r′ ∈ ∆′ σ2(r
′) = rret

∆; Π `ρL
e0.C#m(e1, ..., en) ⇓ ptr(r′) a σ1Π

′′
0, Π

′

Figure 5.7: Permission type rules: Call and Dispatch

Rule Dispatch delegates to a static Call. When a method invocation happens,

what is the exact dynamic type for its receiver object? What we can do in permission

checking is to find out its static type. For here, we will do the best we can. The

type rule will pick some type that the static system knows for the receiver expressed

as Π0 = ρ0 ∈ C, Π′
0. It’s possible that Π′

0 = ρ0 ∈ C ′, Π′′
0 which means that the receiver

ρ0 has a polymorphic type since our system allows subtyping. For most precision, one

would pick the “best” static type, but safety requires only a possible type. The rule for
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methods checks overriding to ensure that picking a less precise type does not subvert

the permission type system.

In the rule Call, we first permission check the receiver expression and each ac-

tual parameter and get the output permissions Πn. It’s required that Πn includes a

fact of type assertion for the receiver object ρ0. Then we fetch the procedure type

(∆′
0; Π

′
0)

rholding−−−−→ (∆′′
0; Π

′′) according to the method name and receiver’s type. The out-

put permission bag Π′′ will use the (existentially quantified) variables in ∆′′
0 as well as

the (universally quantified) variables in ∆′
0. We use the fresh ∆′ to act as the first

set. The substitution goes in the reverse direction than one might think, and thus

Π′′ is represented as σ2Π
′′
0 where Π′′

0 uses the fresh variables as well as the universally

quantified variables from ∆′
0. Once all actual parameters are checked, we then form

σ1 to substitute these remaining variables and split the Πn into two parts: one which

matches the substituted input permissions σ1Π
′
0 and one which contains the remaining

permissions Π′. The latter are combined with the substituted output permissions σ1Π
′′
0

to create the resulting environment.

5.1.8 Others

Variable
rx ∈ ∆

∆; Π `ρL
x ⇓ ptr(rx) a ∆; Π

ObjLoc

∆; Π `ρL
o ⇓ ptr(o) a ∆; Π

Skip

∆; Π `ρL
skip ⇓ ptr($0) a ∆; Π

Arithmetic
∆; Π `ρL

e1 ⇓ ptr(int) a ∆′; Π′ `ρL
e2 ⇓ ptr(int) a ∆′′; Π′′

∆; Π `ρL
e1 op e2 ⇓ ptr(int) a ∆′′; Π′′

Figure 5.8: Permission type rules: others
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Input and output permissions are the same when permission checking a variable, a

literal object or a skip expression using rule Variable, ObjLoc and Skip respectively.

The arithmetic expression only accepts the primitive int type subexpressions. For

simplicity, we still use a pointer type ptr(int) for any int expression. That is, any int

type expression can be considered as a reference that pointing to some uninteresting

integer object.

5.1.9 Method

Method
∆1; rthis ∈ C, Π1 `rholding

e ⇓ ptr(ρ) a ∆′; σ2Π2 {rx1 , ..., rxn , rthis, rholding} ⊆ ∆1

∆′ ∩∆2 = ∅ σ2 : ∆2 → ∆′ rret ∈ ∆2 σ2(rret) = ρ

∀C4C′mbody(C ′,m) = (x′, e′,∀∆′
1; Π

′
1

rholding−−−−→ ∃∆′
2; Π

′
2) ⇒ (|x| = |x′|) ∧ (Π′

1 ; Π1) ∧ (Π2 ; Π′
2)

` ∀∆1; Π1

rholding−−−−→ ∃∆2; Π2 is the type for mn(x){e} of the class C

Figure 5.9: Permission type rules: method

Method permission checks the body of a method using its input permission from

its method type. At the end of the method body, the output permission must match

a substitution of the output environment. In addition, if the method overrides another

method, it should satisfy the standard covariant/contravariant condition, specified using

environment transformation. The constructor is a special form of method which calls

its superclass’s constructor at the beginning and returns the receiver object at the end.

Some permission nesting transformations may happen implicitly inside the constructor

(see section 5.2 for details).
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5.1.10 Parallel Composition

To permission check an internal parallel composition expression e1||...||en, such that ei

is nested most recently in a synchronized block holding lock ρLi
, the input permission

Π should be able to be partitioned into n parts, and each of which is the granted per-

mission to permission check one of the parallel branches. The resulting permission type

for the whole parallel composition is uninteresting. Here, we use a little different per-

mission judgement, since this parallel composition happens involving different parallel

threads at the same time. Actually, there are n permission checking happening within n

separate parallel threads and the whole parallel composition cannot be satisfied by the

granted permission Π unless all its branches are satisfied by their granted permissions

respectively.

Par
Π = Π1, ..., Πn ∆; Πi `ρLi

ei ⇓ ptr(ρi) a ∆′
i; Π

′
i

∆; Π `(ρL1
||...||ρLn ) e1||...||en ⇓ ptr($0) a ∆′

1 ∪ ... ∪∆′
n; Π′

1, ..., Π
′
n

Figure 5.10: Permission type rules: parallel composition

5.2 Permission Transformation

We define permission transformation so that type system can convert permissions from

one form, to a more convenient form [8]. In particular:

• one may reorder permissions;

• one may expand or extract a named predicate;

• one may split or merge fractions of the same key;
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• one may generate or apply a conditional permission;

• one may open or close an existential type;

• one may carve or replace a nested permission;

• one may perform nesting (but not undo it!);

• one may deduce a new order between objects.

We write E ; E ′ to indicate that one environment E can be transformed into

another environment E ′ 1. We permit two different kinds of transformations: one that

is logical implication (written as V) and one that merely permits nesting:

Tr-Implies

E V E ′

E ; E ′

Tr-Nest

∆; Π1, Π2 ; ∆; Π1, (Π2 ≺ k)

The Tr-Nest says that one may give up any permission and receive in its place a

“nesting fact”. The place of nesting is arbitrary. Adding rules to prevent cyclic nesting

is not feasible since nesting can be easily concealed.

Logical implication is defined at the level of permission semantics:

∀σ,h≤µ,A(h |=A σE) ⇒ ∃σ′⊇σ,h′≤h(h
′ |=A σ′E ′)

E V E ′

Here, we borrow some concepts from the next chapter. The h |=A σE indicates that a

fractional heap h can be used to model the E with an assumption A and a substitution

σ which will substitute away the variable set in E. The σ′ ⊇ σ means that σ′ is the

same as σ on the domain of σ. We do not permit the assumption set A to increase, but

we do permit the heap to get smaller. In essence, one can “forget” permissions, but not

invent new nesting facts.

1We simply write Π ; Π′ if the two environments have the same variable set.
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Figure 5.11 and 5.12 list some intuitionistic transformation rules based on logical

implication. Transformations about permission scaling are given in Figure 5.13. Here,

the E ≡ E ′ acts as a short hand for E V E ′ and E ′ V E.

Tr-Subst

Π, r = ρ ≡ [r 7→ ρ]Π, r = ρ
Tr-Duplicate

Γ ≡ Γ, Γ
Tr-Conj

Γ1, Γ2 ≡ Γ1 ∧ Γ2

Tr-Sub
Π1 V Π′

1

Π1, Π2 V Π′
1, Π2

Tr-Comm

Π1, Π2 ≡ Π2, Π1

Tr-Trans
Π V Π′ Π′ V Π′′

Π V Π′′

Tr-Ident

Π ≡ Π

Tr-Drop

Π V ∅

Tr-VarNull
r 6∈ ∆

∆; Π V ∆ ∪ {r} ; r = $0, Π

Figure 5.11: Transformation rules-1.

Tr-CondTrue

Γ, (Γ)?(Π1) : (Π2) ≡ Γ, Π1

Tr-CondFalse

¬(Γ), (Γ)?(Π1) : (Π2) ≡ ¬(Γ), Π2

Figure 5.12: Transformation rules-2.

Tr-FracEmpty

ξ∅ ≡ ∅
Tr-FracFact

ξΓ ≡ Γ
Tr-FracCond

ξ((Γ)?(Π1) : (Π2)) ≡ (Γ)?(ξΠ1) : (ξΠ2)

Tr-FracImpl

ξ(Π1 −+ Π2) ≡ ξΠ1 −+ ξΠ2

Tr-FracComb

ξ(Π1, Π2) ≡ ξΠ1, ξΠ2

Tr-FracBase

ξ(ξ′Π) ≡ (ξξ′)Π

Figure 5.13: Transformation rules-3.

The rule Tr-Ident and Tr-Trans ensure that the transformation ; is a reflexive

and transitive relation. Rule Tr-Duplicate shows that facts can be duplicated arbi-

trarily. Given a particular fact, a conditional permission can be simplified to its then

or else part by Tr-CondTrue or Tr-CondFalse respectively.
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Tr-Pack

ξk : ptr(ρ), [r 7→ ρ]Π V ∃r.(ξk → r, Π)

Tr-Unpack
r′ fresh

∆;∃r.(ξk → r, Π) V {r′} ∪∆; ξk : ptr(r′), [r 7→ r′]Π

Tr-Split

Π ≡ 1/2Π, 1/2Π

Tr-OrderGen1

r1 < r.lv, r2 > r.lv V r1 < r.lv, r2 > r.lv, r1 < r2

Tr-OrderGen2

r1 < r2, r2 < r3 V r1 < r2, r2 < r3, r1 < r3

Tr-Carve-Fill
Γ = ξk : τ ≺ k′ ΠΓ = ξ1k1 : τ1 ≺ k′, ..., ξnkn : τn ≺ k′

Π = (ξ1k1 : τ1, ..., ξnkn : τn) −+ k′ : τ ′ ∀i ∈ [1..n].k 6= ki

∆; Γ, ΠΓ, Π ≡ ∆; Γ, ΠΓ, (ξk : τ, ξ1k1 : τ1, ..., ξnkn : τn) −+ k′ : τ ′, ξk : τ

Figure 5.14: Transformation rules-4.

Scaling a conditional, an implication or a compound permission could be trans-

formed into scaling their sub-branches by Tr-FracCond, Tr-FracImpl and Tr-

FracComb. But scaling a fact does not change the fact by the rule Tr-FracFact.

Figure 5.14 lists some important transformations. Tr-Split shows that any per-

mission could be scaled and split, while the Tr-Pack and Tr-Unpack introduces and

eliminates the existential permission packages respectively.

If a level is higher than one object but lower than the other, then the level acts as

an intermediate that indicates the former object is directly lower than the latter one by

Tr-OrderGen1. The Tr-OrderGen2 shows that the partial order < is transitive.

Carving out (or filling back) a fractional permission uses a complicated rule Tr-

Carve-Fill which basically has two requirements above the line:

• There must be a corresponding nesting fact expressed as Γ;
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• At least this fractional permission is still nested in its nester permission even

though the nester permission may already have been carved out some permissions

with different keys.

With the transformations, every permission checking rule permits a transformation

around it:

Trans

E ; E ′ E ′ `ρL
e ⇓ τ a E ′′ E ′′ ; E ′′′

E ` e a τE ′′′ρL

5.3 Summary

This chapter defines the permission checking process including permission typing rules

and permission transformation rules. For any expression that nested most recently in a

synchronized block holding a lock, if there exists an environment that includes all the

required permissions for this expression, then the expression can be permission checked

and has a permission type.

Since permissions are given in some complicated form, they may not be able to

match the requirements of expressions directly, we use transform them to fit for the re-

quirement by transformation rules. Furthermore, the transformation also demonstrates

some important properties of permissions, such as factional and nesting.
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Chapter 6

Consistency

To ensure the soundness, it is required that well permission-typed program can

never go wrong. That is, neither data races nor deadlocks may happen at runtime

for a permission checked program. To verify this property, we need to have the static

environments E and dynamic runtime states µ match to each other according to our

operational semantics and permission type rules. This is called “consistency”.

As mentioned before, a memory µ maps a pair of object and field to another object:

µ ∈ Memory = (O × F ) ⇀ O

This is very simple and precise. But on the other side, permissions are defined in

complicated and indirect forms (fractional, conditional ...), how to match these two?

We bridge them by a fractional heap.

6.1 Fractional Heap

A fractional heap maps each location to a pair of a positive fraction and an object value

($0 is a particular object reference represented as null pointer and uses 0 as its fraction):

h ∈ Fractional Heap = (O × F ) → ((Q+,O) ∪ {(0, $0)})

Definition 6.1.0.1 (Empty Fractional Heap) The empty fractional heap (written

∅̂) maps every address to (0, $0), such that ∀l.∅̂(l) = (0, $0).

Two fractional heaps can be combined by adding together the corresponding frac-

tions if the values match and they are combined pointwise.
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Definition 6.1.0.2 (Combination of Fractional Heaps) Given two fractional heaps

h1 and h2, then for any l ∈ Dom(h1) ∪ Dom(h2),

(h1+̂h2)(l) =


h1(l) if fst(h2(l)) = 0
h2(l) if fst(h1(l)) = 0
(q1 + q2, snd(h1(l))) if snd(h1(l)) = snd(h2(l)) with qi = fst(hi(l))
undefined otherwise

h1 and h2 are compatible if their combination h1+̂h2 is defined.

One fractional heap may be included into another.

Definition 6.1.0.3 We say that one heap is included in another h1 ≤ h2 if for every

non-zero fraction in the first, it matches the second with at most that fraction: ∀l.(q1 =

0) ∨ (q1 ≤ q2 ∧ o1 = o2) where (qi, oi) = hi(l).

Any fractional heap must be consistent with the actual memory.

Definition 6.1.0.4 A fractional heap h is consistent with memory µ (written h ≤ µ)

iff ∀l ∈ Dom(h).(fst(h(l)) ∈ [0..1]) ∧ ((fst(h(l)) > 0) ⇒ ((l ∈ Dom(µ)) ∧ (snd(h(l)) =

µ(l)))).

6.2 Flattening

After connecting a memory with a fractional heap (h ≤ µ), we turn to another side:

connect the fractional heap with permissions.

We use h |=A σ(∆; Π) to indicate that: given a particular substitution σ, an envi-

ronment (∆; Π) can be modeled by a particular fractional heap h with an assumption

A. Here, the assumption A is used to give truth value to permission facts.

In general, we need three values to ‘witness” facts:

A≺ Fractional nesting relations assumed true. Used to assign truth value to nesting

predicates;
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AP Instantiated predicates assumed true. Used to assign truth values to named pred-

icates.

A< Partial order among locks assumed true. Used to assign truth values to partial

order predicates.

The above three are combined as a shorthand A = (A≺, AP, A<) with which any fact

can be evaluated to get a truth value: A ` Γ ⇓ bool (see Figure 6.1 for all the rules).

We use l to range over addresses (o, f ).

CB-True

A ` true ⇓ true

CB-Neg
A ` Γ ⇓ b

A ` ¬(Γ) ⇓ ¬b

CB-And
A ` Γ1 ⇓ b1 A ` Γ2 ⇓ b2

A ` Γ1 ∧ Γ2 ⇓ b1 ∧ b2

CB-SubType

A ` o ∈ C ⇓ (class(o) 4 C)
CB-Equal

A ` o=o′ ⇓ o = o′

CB-Axiom
Γ ∈ A

A ` Γ ⇓ true

CB-Exist
A ` [δ 7→ X]Γ ⇓ true

A ` ∃δ.(Γ) ⇓ true

CB-Pred
A ∪ {p(o)} ` [r 7→ o]P (p) ⇓ true

A ` p(o) ⇓ true

Figure 6.1: Auxiliary rules for facts: A ` Γ ⇓ bool.

Definition 6.2.0.5 (Flattening) Given an assumption A, if a variable-free permis-

sion Π with an obligation permission Ψ can be modeled by a fractional heap h, then we

say the permission Π can be flattened (written as h; Ψ |=A Π), where the obligation Ψ is

treated as a restricted permission that can be discharged symbolically from the Π. The

detailed flattening rules are in Figure 6.2.

Both of the empty permission and a true predicate are flattened to the empty frac-

tional heap by CP-Empty and CP-True respectively. For a conditional permission



72

CP-Empty

∅̂; ∅ |=A ∅

CP-True
A ` Γ ⇓ true

∅̂; ∅ |=A Γ

CP-Combine
hi; Ψi |=A Πi

h1+̂h2; Ψ1, Ψ2 |=A Π1, Π2

CP-Frac
` ξ ⇓ q h; Ψ |=A Π

qh; ξΨ |=A ξΠ

CP-TrueCond
A ` Γ ⇓ true h; Ψ |=A Π1

h; Ψ |=A (Γ)?(Π1) : (Π2)

CP-FalseCond
A ` ¬(Γ) ⇓ true h; Ψ |=A Π2

h; Ψ |=A (Γ)?(Π1) : (Π2)

CP-Implication
h; Ψ′, Ψ |=A Π

h; Ψ′ |=A Ψ −+ Π

CP-Exist
h; Ψ |=A [δ 7→ X]Π

h; Ψ |=A ∃δ.(Π)

CP-Field

Π≺ =
∑

Π≺o.f ∈A

Π h; Ψ |=A Π≺

h+̂[o.f 7→ (1, o′)]; Ψ |=A o.f → o′

Figure 6.2: Flattening rules: h; Ψ |=A Π.

(Γ)?(Π1) : (Π2), we have two rules CP-TrueCond and CP-FalseCond corresponding

to the two possibilities for Γ’s truth value. CP-Implication applies to the implication

permission Ψ −+ Π which moves the Ψ to left-hand-side as an obligation when flat-

tening the Π. CP-Combine shows that if a permission Π and an obligation Ψ can be

split into Π1, Π2 and Ψ1, Ψ2 respectively and hi is the fractional heap for Πi with an

obligation Ψi, then the Π with the obligation Ψ can be flattened into the combination

of h1 and h2. From the rule CP-Frac, scaling the permission Π and the obligation

Ψ with the same amount ξ will cause its fractional heap to be scaled by q, where q

is evaluated from ξ. For an existential type, we use the actual objects thus typed to

substitute for the object variables in CP-Exist.

To flatten a unit permission, we use CP-Field. which applies to any field. Assum-

ing this field acts as a location that being nested some other permissions, to flatten this

unit permission, we need to carve out all the permissions that nested in it and combine

them as Π≺. If the Π≺ can be flattened using the same assumption A and obligation Ψ

into h, then the whole unit permission can be flattened into h+̂[o.f 7→ (1, o′)].
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With the flattening, the connection between h and environment E = (∆; Π) is given

as a judgement:

h; ∅ |=A σΠ

h |=A σ(∆; Π)

6.3 Consistency Checking

With one connection between memory µ and h (h ≤ µ) as well as the other connection

between h and environment E (h |=A σE), we are able to establish the consistency

between µ and E directly which is given as µ; A |= ∆; Π.

We assume there exists a substitution σ : ∆ → ∅ mapping from object and fraction

variables in ∆ to absolute addresses or numbers between zero and one respectively. The

empty set range means that the result of the substitution uses no variables at all.

With the σ, we are able to flatten the environment (∆; Π) into a fractional heap h

with referring to an assumption A. Moreover, the h should be consistent with memory

µ. This is given as a judgement:

σ : ∆ → ∅ h |=A σ(∆; Π) h ≤ µ

µ; A |= ∆; Π

6.4 Soundness

The fundamental soundness of this permission type system depends on a theorem of

progress and preservation:

Theorem 6.4.0.6 (Progress and Preservation) For an expression e = e1||e2|| . . . ||en

where 1 ≤ n and assuming that ei nested most recently in a synchronized block holding

oL−i (or oL−i = othisThread-i if it is not inside any synchronized block), then if ei can be

checked by a variable-free permission Πi such that ∅; Πi `oL−i
ei ⇓ ptr(ρi) a ∆′′

i ; Π
′′
i ,
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Π = Π1, Π2, ..., Πn, ∆′′ =
⋃n

i=1 ∆′′
i , and a memory µ with an assumption A is consistent

with (Π, Π̃), then either e is a value of the form o1||o2|| . . . ||on or one of its branch can

be evaluated one-step further :

• either there is no thread spawn and (µ; ei)
i−→ (µ′; e′i) happens in some thread i and

e′ = e1||...||e′i||...||en; or

• a new thread is created (µ; e)
i−→ (µ′; e||en+1) for some thread i and e′ = e||en+1;

and there exists Π′, Π̃′, σ and A′ such that σ will substitute away some of the new type

variables (σ : ∆ → ∅ with ∆ ⊆ ∆′′), ∅; Π′ ` e′ ⇓ ptr(σρ) a σ∆′′; σΠ′′ and µ′ with the

assumption A′ is consistent with (Π′, Π̃′) where A ⊆ A′.

(Sketch) We combine the permission type rules with the operational semantics and

prove by the induction on permission checking rules case by case. This will be similar

to our previous work [5, 7].

Soundness indicates that a well permission-typed program can never go wrong (free

of data races and deadlocks). Here, we say a program is well permission-typed if all its

method bodies can be permission checked by their method types in permission.

6.5 Summary

This chapter defines the consistency property of our permission system. Since the

permission analysis is totally static, it’s necessary to find a way to show that it abstracts

the run-time properties properly. We define a fractional heap to bridge the static

environment and the dynamic run-time memory. Based on the consistency, we are

able to define the progress and preservation theorem and show the soundness of our

permission system as well.
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Chapter 7

Implementation

We have implemented a prototype tool that embodies the permission analysis tech-

niques described in previous chapters. This tool extends the current permission analysis

[William Retert, personal communication] designing for sequential programs with bor-

rowing some annotations from Greenhouse’s lock analysis. In this chapter, we briefly

show several design issues and then give some permission checking examples.

7.1 Fluid-Level Design

The Fluid Project is focused on creating practicable tools for programmers to assure

and evolve real programs [45]. The current permission analysis designed by Retert is

developed as part of the Fluid project.

In Fluid, the control-flow graph (CFG) has one node for each atomic action, such

that reading a variable, assigning a field, or ignoring a value. For example, the simplified

CFG for a code segment

this.f1 = this.f2 + x;

consists of the straight-line sequence of nodes that

1. reads this onto the stack;

2. reads this onto the stack;

3. pops off an object reference; pushes its f2 field onto the stack;

4. reads x onto the stack;
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5. pops two elements from the stack, adds them and pushes the result back to the

stack;

6. swaps the top two elements of the stack; pops off an object reference; copies the

new top of the stack into field f1 of the object;

7. pops the top of the stack.

Actually the CFG in Fluid has many more nodes than the above ones. We ignore them

in this document.

The current permission analysis uses a PermissionLattice which is composed of

four parts:

• A LocationMap that maps local variables or location-field pairs to their associated

locations;

• A PermissionSet that maps location-field pairs to their fractions;

• A FactSet that includes all permission facts, such as reference equalities, type

assertions, nesting facts and so on;

• A ValueStack that includes location values of expressions;

That is:

LocationField : Location× Field

LocationMap : (Var ∪ LocationField) → Location

PermissionSet : LocationField→ Fraction

FactSet : Set of Fact
ValueStack : Stack of Location

PermissionLattice : LocationMap× PermissionSet× FactSet× ValueStack

To extend current permission analysis to multithreaded programs, We need to add

lock ordering information to the lattice. Besides the new order facts, we additionally
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attach a LockStack to the lattice, where the element of the LockStack is a pair of locks:

the most recent acquired lock and the most recent holding lock. These two may not be

the same at some cases because of the reentrant locks, for example,

synch o1 do { synch o2 do { synch o1 do { ... } } }

Assuming the o1 has a lower level than the o2, then any expression appears inside of the

second synchronization of o1 has a different recent acquired lock with the most recent

holding lock. They are o1 and o2 respectively.

ConcurrencyPermissionLattice : PermissionLattice× LockStack

Figure 7.1 shows how to maintain the ConcurrencyPermissionLattice for each

node based on the simple language defined in Chapter 3. In practice, they are repre-

sented as transfer functions and should be included some assurance about whether the

input ConcurrencyPermissionLattice is good enough to perform this node.

As mentioned before, a fork will spawn a new thread and take away some permis-

sions. This is safe enough for the theoretical permission checking, but it is not practical,

since we need to know exactly which permissions will be thrown into the new thread

and which ones stay. In our prototype tool, we keep all the permission remaining in

the current thread, but duplicate facts in new threads. The permission transformation

tells us it’s safe to arbitrarily duplicate facts. There may be another choice: besides

facts, permissions coming with the unique parameters can leave the current thread and

go into a new one.

7.2 Examples for Permission Checking

We combine method types, permission checking rules as well as transformations to give

the permission checking for several methods step by step based on nodes. For clarity
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Nodes Actions

n push literal number n on ValueStack.

x read variable x into the ValueStack.

op pop two elements from the ValueStack, op them and push the result

back.

== pop two elements from the ValueStack, compare them and determine

branch with adding different facts to FactSet.

.f pop off an object reference from ValueStack; push its f field back.

.f = swap the top two elements of the ValueStack; pop off an object

reference; update the LocationMap.

new C create a new object of type C and push it into ValueStack and

update the LocationMap.

; pop top element of the ValueStack and discard it.

let x = pop top element of the ValueStack and update LocationMap.

.m( ) pop off n actual parameters and a receiver object from ValueStack

and then call the method with it; push the return value back.

.C#m( ) pop off n actual parameters and a receiver object from ValueStack

and then call the method in type C; push the return value back.

return ; pop the top element of the ValueStack and return it.

skip push the $0 into the ValueStack.

acquire ; pop the top element l of the ValueStack and peek the top element

(l1, l2) of the LockStack, if l has a higher level than the l2, then push

(l, l) into the LockStack; or if [(l, Prot) 7→ 1] ∈ PermissionSet, then

push (l, l2) into the LockStack.

release; pop the top element from the LockStack.

fork; push the $0 into the ValueStack.

Table 7.1: CFG nodes and actions



79

reason, we don’t use the ConcurrencyPermissionLattice mentioned above, but the

traditional permission forms defined in Chapter 4. Therefore, some detailed information

may not be included. The first and the last permission in the method body correspond

to the input and output permission of this method. To save space, the {...} after an

action is equal to the permission before that action. Also, we ignore the action “ ;”

in the code.

7.2.1 Node.setNext

This method shows the usage of method effect. A “writes” effect basically gives a unit

permission.

void setNext( Node<g> n ) writes (this.next) {
(¬(rn = $0))?(Node(rn, rg), rn.All→ $0) : (∅),

∃r.(rthis.next→ r, (¬(r = $0))?(r.All→ $0, Node(r, rg)) : (∅)),
Node(rthis, rg)

 Tr-Unpack
;


(¬(rn = $0))?(Node(rn, rg), rn.All→ $0) : (∅),

rthis.next→ rnext, (¬(rnext = $0))?(rnext.All→ $0, Node(rnext, rg)) : (∅),
Node(rthis, rg)


this ⇓ ptr(rthis)

{...}
n ⇓ ptr(rn)

{...}
_.next = _ ⇓ ptr(rn)

(¬(rn = $0))?(Node(rn, rg), rn.All→ $0) : (∅),
rthis.next→ rn, (¬(rnext = $0))?(rnext.All→ $0, Node(rnext, rg)) : (∅),

Node(rthis, rg)

 Tr-Pack
;


∃r.(rthis.next→ r, (¬(r = $0))?(r.All→ $0, Node(r, rg)) : (∅)),

(¬(rnext = $0))?(rnext.All→ $0, Node(rnext, rg)) : (∅),
Node(rthis, rg)

 Tr-Drop
;

{
∃r.(rthis.next→ r, (¬(r = $0))?(r.All→ $0, Node(r, rg)) : (∅)),

Node(rthis, rg)

}
null ⇓ ptr($0)

{...}
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return _ ;{
∃r.(rthis.next→ r, (¬(r = $0))?(r.All→ $0, Node(r, rg)) : (∅)),

Node(rthis, rg), rret = $0

}
}

7.2.2 Node.Node

A constructor in our system will implicitly call the super’s constructor at the beginning

and return the receiver object at the end.

Node<g>( shared Object d ) {
rthis ∈ Node,

rthis.next→ $0, rthis.datum→ $0, rthis.All→ $0,

(¬(rd = $0))?(Object(rd), rd.All→ $0 ≺ rd.Prot) : (∅)


this ⇓ ptr(rthis)

{...}
_ .Object#Object() ⇓ ptr(rthis)

{...}
this ⇓ ptr(rthis)

{...}
d ⇓ ptr(rd)

{...}
_ .d = _ ⇓ ptr(rd)

rthis ∈ Node,

rthis.next→ $0, rthis.datum→ rd, rthis.All→ $0,

(¬(rd = $0))?(Object(rd), rd.All→ $0 ≺ rd.Prot) : (∅)

 Tr-Pack
;


rthis ∈ Node,

rthis.next→ $0, rthis.All→ $0,

∃r.(rthis.datum→ r, (¬(r = $0))?(Object(r), r.All→ $0 ≺ r.Prot) : (∅))

 Tr-Nest
;


rthis ∈ Node,

rthis.next→ $0, rthis.All→ $0,

∃r.(rthis.datum→ r, (¬(r = $0))?(Object(r), r.All→ $0 ≺ r.Prot) : (∅))
≺ rthis.All


Tr-VarNull

;
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

rthis ∈ Node,

rthis.next→ $0, rthis.All→ $0,

rnext = $0,

∃r.(rthis.datum→ r, (¬(r = $0))?(Object(r), r.All→ $0 ≺ r.Prot) : (∅))
≺ rthis.All


Tr-CondFalse

;



rthis ∈ Node,

rthis.next→ $0, rthis.All→ $0,

rnext = $0, (¬(rnext = $0))?(Node(rnext, rg), rnext.All→ $0) : (∅),
∃r.(rthis.datum→ r, (¬(r = $0))?(Object(r), r.All→ $0 ≺ r.Prot) : (∅))

≺ rthis.All


Tr-Subst

;



rthis ∈ Node,

rthis.next→ rnext, rthis.All→ $0,

rnext = $0, (¬(rnext = $0))?(Node(rnext, rg), rnext.All→ $0) : (∅),
∃r.(rthis.datum→ r, (¬(r = $0))?(Object(r), r.All→ $0 ≺ r.Prot) : (∅))

≺ rthis.All


Tr-Pack

;



rthis ∈ Node,

rthis.All→ $0, rnext = $0,

∃r.(rthis.next→ r, (¬(r = $0))?(Node(r, rg), r.All→ $0) : (∅)),
∃r.(rthis.datum→ r, (¬(r = $0))?(Object(r), r.All→ $0 ≺ r.Prot) : (∅))

≺ rthis.All


Tr-Nest

;



rthis ∈ Node,

rthis.All→ $0, rnext = $0,

∃r.(rthis.next→ r, (¬(r = $0))?(Node(r, rg), r.All→ $0) : (∅)) ≺ rg.Prot,

∃r.(rthis.datum→ r, (¬(r = $0))?(Object(r), r.All→ $0 ≺ r.Prot) : (∅))
≺ rthis.All


Tr-Conj

;

{
rthis.All→ $0, rnext = $0,

Node(rthis, rg)

}
Tr-Drop

;{
rthis.All→ $0,

Node(rthis, rg)

}
this ptr(rthis)

{...}
return _ ;
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
rthis.All→ $0,

Node(rthis, rg),

rret = rthis


}

7.2.3 LinkList.insert

This method may acquire the this in its body. The order between the this and the

surrounding lock expressed as rholding is given as a conditional permission. Its false-

part corresponds to the case that the this has already been held before the method

entry, while the true-part gives an required order 1. Accordingly, the lock acquirement

and release actions are based on the two possibilities and the conditional permission is

properly maintained.

void insert( shared Object d ) uses (this) {
(rholding < rthis)?(∅) : (rthis.Prot→ $0),

(¬(rd = $0))?(rd.All→ $0 ≺ rd.Prot, Object(rd)) : (∅),
LinkList(rthis)


this ⇓ ptr(rthis)

{...}
acquire _

rthis.Prot→ $0,

(¬(rd = $0))?(rd.All→ $0 ≺ rd.Prot, Object(rd)) : (∅),
LinkList(rthis)


new Node ⇓ ptr(r)

¬(r = $0), r ∈ Node,

r.next→ $0, r.datum→ $0, r.All→ $0,

rthis.Prot→ $0,

(¬(rd = $0))?(rd.All→ $0 ≺ rd.Prot, Object(rd)) : (∅),
LinkList(rthis)


Node<this>(d) ⇓ ptr(r)

r.All→ $0,

¬(r = $0), Node(r, rthis),

rthis.Prot→ $0,

LinkList(rthis)


1Although the true-part is empty, the condition part shows this order.
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let newNode = _ {

rnewNode = r,

r.All→ $0,

¬(r = $0), Node(r, rthis),

rthis.Prot→ $0,

LinkList(rthis)


newNode ⇓ ptr(rnewNode)

{...} Tr-Carve-Fill
;

rnewNode = r,

r.All→ $0,

¬(r = $0), Node(r, rthis),

∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),
∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅))

−+ rthis.Prot→ $0,

LinkList(rthis)



Tr-Unpack
;



rnewNode = r,

r.All→ $0,

¬(r = $0), Node(r, rthis),

rthis.head→ rhead, (¬(rhead = $0))?(rhead.All→ $0, Node(rhead, rthis)) : (∅),
∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅))

−+ rthis.Prot→ $0,

LinkList(rthis)


this ⇓ ptr(rthis)

{...}
_ .head ⇓ ptr(rhead)

{...} Tr-Carve-Fill
;
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

rnewNode = r,

r.All→ $0,

¬(r = $0), Node(r, rthis),

rthis.head→ rhead, (¬(rhead = $0))?(rhead.All→ $0, Node(rhead, rthis)) : (∅),
∃r′.(r.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r

′.All→ $0) : (∅)),
(∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),

∃r′.(r.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅)))

−+ rthis.Prot→ $0,

LinkList(rthis)


Tr-Subst

;

rnewNode = r,

rnewNode.All→ $0,

¬(rnewNode = $0), Node(rnewNode, rthis),

rthis.head→ rhead, (¬(rhead = $0))?(rhead.All→ $0, Node(rhead, rthis)) : (∅),
∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r

′.All→ $0) : (∅)),
(∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),

∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅)))

−+ rthis.Prot→ $0,

LinkList(rthis)


_ .setNext( _ ) ⇓ ptr($0)

rnewNode = r,

rnewNode.All→ $0,

¬(rnewNode = $0), Node(rnewNode, rthis),

rthis.head→ rhead,

∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅)),

(∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),
∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r

′.All→ $0) : (∅)))
−+ rthis.Prot→ $0,

LinkList(rthis)


this ⇓ ptr(rthis)

{...}
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newNode ⇓ ptr(rnewNode)

{...}
_ .head = _ ⇓ ptr(rnewNode)

rnewNode = r,

rnewNode.All→ $0,

¬(rnewNode = $0), Node(rnewNode, rthis),

rthis.head→ rnewNode,

∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅)),

(∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),
∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r

′.All→ $0) : (∅)))
−+ rthis.Prot→ $0,

LinkList(rthis)


Tr-CondTrue

;

rnewNode = r,

¬(rnewNode = $0),

(¬(rnewNode = $0))?(rnewNode.All→ $0, Node(rnewNode, rthis)) : (∅),
rthis.head→ rnewNode,

∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅)),

(∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),
∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r

′.All→ $0) : (∅)))
−+ rthis.Prot→ $0,

LinkList(rthis)


Tr-Pack

;
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

rnewNode = r,

¬(rnewNode = $0),

∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),
∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r

′.All→ $0) : (∅)),
(∃r′.(rthis.head→ r′, (¬(r′ = $0))?(r′.All→ $0, Node(r′, rthis)) : (∅)),

∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅)))

−+ rthis.Prot→ $0,

LinkList(rthis)


Tr-Carve-Fill

;

rnewNode = r,

¬(rnewNode = $0),

∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅)),

∃r′.(rnewNode.next→ r′, (¬(r′ = $0))?(Node(r′, rthis), r
′.All→ $0) : (∅))

−+ rthis.Prot→ $0,

LinkList(rthis)


Tr-Carve-Fill

;
rnewNode = r,

¬(rnewNode = $0),

rthis.Prot→ $0,

LinkList(rthis)


}

¬(r = $0),

rthis.Prot→ $0,

LinkList(rthis)

 Tr-Drop
;

{
rthis.Prot→ $0,

LinkList(rthis)

}
release{

(rholding < rthis)?(∅) : (rthis.Prot→ $0),

LinkList(rthis)

}
null ptr($0)

{...}



87

return _ ;
(rholding < rthis)?(∅) : (rthis.Prot→ $0),

LinkList(rthis),

rret = $0


}

7.2.4 Account.deposit

A “requires” annotation gives the unit permission to the Prot data group of the lock

object, which should be returned intact.

void deposit( int x ) requires (this) {{
Account(rthis),

rthis.Prot→ $0, rx = int

}
Tr-Carve-Fill

;{
Account(rthis),

rthis.balance→ int, rthis.balance→ int −+ rthis.Prot→ $0, rx = int

}
this ⇓ ptr(rthis)

{...}
this ⇓ ptr(rthis)

{...}
_ .balance ⇓ ptr(int){

Account(rthis),

rthis.balance→ int, rthis.balance→ int −+ rthis.Prot→ $0, rx = int

}
x ⇓ ptr(int)

{...}
_ + _ ⇓ ptr(int)

{...}
_ .balance = _ ⇓ ptr(int){

Account(rthis),

rthis.balance→ int, rthis.balance→ int −+ rthis.Prot→ $0, rx = int

}

Tr-Carve-Fill
;{

Account(rthis),

rthis.Prot→ $0, rx = int

}
Tr-Drop

;{
Account(rthis),

rthis.Prot→ $0

}



88

null ⇓ ptr($0)

{...}
return _ ;

Account(rthis),

rthis.Prot→ $0,

rret = $0


}

7.2.5 CombinedAccount.savings2checking

This method “uses” two locks which is referred by two fields of the receiver object.

Similar as before, two conditional permissions are included at the beginning to show

the order relation between them and the most recent holding lock at the method entry.

Since the lock this.checking is going to be acquired inside of the synchronized block

holding this.savings, a proper order between them should be granted. This is done

by a transformation that uses the this.lv as a intermediate to get the direct relation

between these two locks.

void savings2checking( int x ) uses (this.savings, this.checking) {

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

(rholding < rchecking)?(∅) : (rchecking.Prot→ $0),

(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),

CombinedAccount(rthis),

rx = int


this ⇓ ptr(rthis)

{...}
_ .checking ⇓ ptr(rchecking)

{...}
acquire _
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

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

rchecking.Prot→ $0,

(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),

CombinedAccount(rthis),

rx = int


this ⇓ ptr(rthis)

{...}
_ .savings ⇓ ptr(rsavings)

{...} Tr-OrderGen1
;

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

rchecking.Prot→ $0,

(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),

CombinedAccount(rthis),

rx = int,

rchecking < rsavings


acquire _
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

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

rchecking.Prot→ $0, rsavings.Prot→ $0,

CombinedAccount(rthis),

rx = int,

rchecking < rsavings


this ⇓ ptr(rthis)

{...}
_ .savings ⇓ ptr(rsavings)

{...}
x ⇓ ptr(int)

{...} Tr-Duplicate
;

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

rchecking.Prot→ $0, rsavings.Prot→ $0,

CombinedAccount(rthis),

rx = int, rx = int,

rchecking < rsavings


_ .withdraw( _ ) ⇓ ptr($0)
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

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

rchecking.Prot→ $0, rsavings.Prot→ $0,

CombinedAccount(rthis),

rx = int,

rchecking < rsavings


this ⇓ ptr(rthis)

{...}
_ .checking ⇓ ptr(rsavings)

{...}
x ⇓ ptr(int)

{...}
_ .deposit( _ ) ⇓ ptr($0)

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

rchecking.Prot→ $0, rsavings.Prot→ $0,

CombinedAccount(rthis),

rchecking < rsavings


release
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

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

rchecking.Prot→ $0,

(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),

CombinedAccount(rthis),

rchecking < rsavings


release

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

(rholding < rchecking)?(∅) : (rchecking.Prot→ $0),

(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),

CombinedAccount(rthis),

rchecking < rsavings


Tr-Drop

;
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

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

(rholding < rchecking)?(∅) : (rchecking.Prot→ $0),

(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),

CombinedAccount(rthis)


null ⇓ ptr($0)

{...}
return _ ;

z1rthis.checking→ rchecking,¬(rchecking = $0), z1rchecking.All→ $0,

Account(rchecking), rchecking < rthis.lv,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

(∃r.(z1rthis.checking→ r,¬(r = $0), z1r.All→ $0, Account(r), r < rthis.lv),

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv))

−+ $0.Immutable→ $0,

(rholding < rchecking)?(∅) : (rchecking.Prot→ $0),

(rholding < rsavings)?(∅) : (rsavings.Prot→ $0),

CombinedAccount(rthis),

rret = $0


}

7.2.6 CombinedAccount.double savings

This method includes two thread spawn inside. The permission coming to the fork

action will be split into two parts: one remains in the current thread and the other

flows into the new thread. The remaining permission shows up right after the spawn

expression. We give another process to show the permission checking in the new thread.

The two thread spawn presenting in this method have the same expression body as well

as the same incoming permission.
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void double_savings(int x) uses (this.savings)

holdingLock < this.savings {

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rsavings,

CombinedAccount(rthis),

rx = int


this ⇓ ptr(rthis)

{...}
_ .savings ⇓ ptr(rsavings)

{...}
let s = _

rs = rsavings,

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rsavings,

CombinedAccount(rthis),

rx = int


Tr-Subst

;

rs = rsavings,

z2rthis.savings→ rs,¬(rs = $0), z2rs.All→ $0,

Account(rs), rs > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rs,

CombinedAccount(rthis),

rx = int


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Tr-Duplicate
;

rs = rsavings,

z2rthis.savings→ rs,¬(rs = $0), z2rs.All→ $0,

Account(rs), rs > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rs,

CombinedAccount(rthis),

rx = int,

¬(rs = $0), Account(rs), rx = int


fork ⇓ ptr($0)

rs = rsavings,

z2rthis.savings→ rs,¬(rs = $0), z2rs.All→ $0,

Account(rs), rs > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rs,

CombinedAccount(rthis),

rx = int


Tr-Duplicate

;

rs = rsavings,

z2rthis.savings→ rs,¬(rs = $0), z2rs.All→ $0,

Account(rs), rs > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rs,

CombinedAccount(rthis),

rx = int,

¬(rs = $0), Account(rs)


fork ⇓ ptr($0)
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

rs = rsavings,

z2rthis.savings→ rs,¬(rs = $0), z2rs.All→ $0,

Account(rs), rs > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rs,

CombinedAccount(rthis)


}

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rsavings,

CombinedAccount(rthis)


null ⇓ ptr($0)

{...}
return _ ;

z2rthis.savings→ rsavings,¬(rsavings = $0), z2rsavings.All→ $0,

Account(rsavings), rsavings > rthis.lv,

∃r.(z2rthis.savings→ r,¬(r = $0), z2r.All→ $0, Account(r), r > rthis.lv)

−+ $0.Immutable→ $0,

rholding < rsavings,

CombinedAccount(rthis)

rret = $0


}

Additional permission checking for the thread spawn: fork (s) ...

fork (s) {{
¬(rs = $0), Account(rs), rx = int,

rthisThread < rs, rthisThread.Prot→ $0

}
s ⇓ ptr(rs)

{...}
acquire _
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
¬(rs = $0), Account(rs), rx = int,

rthisThread < rs, rthisThread.Prot→ $0,

rs.Prot→ $0


s ⇓ ptr(rs)

{...}
x ⇓ ptr(int)

{...}
_ .deposit( _ ) ⇓ ptr($0)

¬(rs = $0), Account(rs),

rthisThread < rs, rthisThread.Prot→ $0,

rs.Prot→ $0


release{

¬(rs = $0), Account(rs),

rthisThread < rs, rthisThread.Prot→ $0

}
}

7.3 Summary

This chapter shows some implementation issues about our permission system. Our

prototype tool is based on the current permission analysis in Fluid project by extending

the lattice and transfer functions. We provide the detailed permission checking for some

methods that mentioned in previous chapters.
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Chapter 8

Discussion

8.1 Ownership & Permission Nesting

Ownership is a recognized alias control technique. With ownership, each object has

another object as its owner. The root of the ownership hierarchy is often called “world.”

Ownership types provide a statically enforceable way of specifying object encapsulation.

Clarke and others propose an owners-as-dominators model: any reference to an object

must pass that object’s owner [46, 47]. This encapsulation property prevents any access

to an object from objects outside its owner.

Boyapati and others varies the previous owners-as-dominators model into a new one:

owners-as-locks, such that any reference to an object must guarantee that its owner (or

the root-owner) is held by the current thread.

As mentioned before, the ownership basically indicates an encapsulation relation.

This is very similar as the nesting relation in our permission system. We can nest

some permission of any object into its owner permission. For the owners-as-dominators

model, this is expressed as:

r.All ≺ rowner.Owned

where the rowner is the owner of the object r and the Owned data group 1 holds the state

of objects owned by the current object.

For the Boyapati’ owners-as-locks model, this ownership protection relation looks

1Similar as the All, the Owned is a special data group inherited from Object.
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like:

r.All ≺ rrootowner.Prot

where the rrootowner is the root-owner of the object r. The Prot data group has the

same meaning used as usual and the unit permission to r.All is only granted inside of

the synchronized block holding its root-owner object, where the r.All, by default, is

considered as the state of object r. This is done by nesting all the unit permissions

of fields (data groups) into the All data group. Figure 8.1 shows an example. The

ownership tree is on the left, such that the o1 is the root. The unit permission for

o1.Prot is represented as a box that includes the unit permission for o2.All, o3.All,

o4.All as well as o1.All since it is self owned.

O1.Prot

O2.All

O1

O2

O3
O4

O3.All O4.AllO1.All

Figure 8.1: Permission representation for ownership

In the owners-as-locks model, the whole state of an object has to be protected by

a single lock (its root-owner). This is a little bit restrictive. Our permission system,

however, is more flexible and able to have different guards that protect different parts

of an object’s state. For a code segment in Figure 8.2, class C has several fields such

that the f1 and f2 are “guarded by” different guards.

From Chapter 4, annotations will be translated into permissions. Thus, we get three

different field invariants in permission:

Γf1 = rthis.f1→ int ≺ rg1.Prot
Γf2 = rthis.f2→ int ≺ rg2.Prot
Γf3 = rthis.f3→ int ≺ rthis.All

This permission representation shows that the different fields in this class has different
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class C<g1, g2> {
int f1 guarded_by g1;
int f2 guarded_by g2;
int f3;
......

}

Figure 8.2: Code segment of a class definition.

nester permission. See Figure 8.3, assuming o1 is an instance of this class and we use a

disk to represent its state, then the g1.Prot, g2.Prot and o1.All separately “owns”

different parts of o1’s state. Therefore, we split object’s state based on fields and they

Figure 8.3: Multiple nesters for object state based on fields

are associated different protectors (nesters).

In the current permission system, if a field is “guarded by guard”, any access to

this field should be in the protection of the guard, both reads and writes. In this

case, the whole unit permission of the field access is nested into the Prot data group

of its guard object. One of our future directions is to apply a new field annotation

“write guarded by guard”, such that only the write access to this field is required to

protected by the guard. This annotation is first introduced by Flanagan and Qadeer in

their atomicity paper [16].

The intuitive idea is to only nest fractional permission of the field access into the Prot

data group of its guard object, while remaining the rest into the All data group of the re-
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ceiver object. For example, if a f with a primitive int type is “write guarded by guard”,

then its field invariant is given as:

Γf = (1/2rthis.f → int) ≺ rguard.Prot ∧ (1/2rthis.f → int) ≺ rthis.All

Assuming the class defined in Figure 8.2 has an additional formal class parameter

g3 as well as a field f4 such that the latter is “write guarded by” the former, then

Figure 8.4 shows another multi-protector graph for the object’s state with using the

new “write guarded by”.

Figure 8.4: Multiple nesters for object state based on fields and protection mechanism.

The annotation “write guarded by” does help to build some parallel interference

patterns, especially the unique thread write which only allows a unique thread to write

a particular field of an object. In order to achieve race-free for the unique thread write

pattern among parallel interference, there are two choices.

• The whole unit permission to access that field is granted to a thread, while other

parallel threads get nothing. Figure 8.5.(a) demonstrates an example of this case.

We use the 1 to show the unit permission indicating the possible write access,

while a 0 shows no access at all.
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• If this field is annotated as “write guarded by guard”, such that a fractional

(1/2) permission is protected by (nested into) the guard, while the rest is staying

in the All data group of its object. Figure 8.5.(b) shows an example of this case.

The 1/2 is used to represent the rest fractional (1/2) permission that nested in

the All of its object. It goes into one thread and is promoted to a whole unit

permission (1/2+1/2) when entering some particular synchronized block with

holding its guard object. Other parallel threads are not able to access this field

except in a synchronized block holding its guard, where only read is allowed.

1

1 0

...
...

...
...

(a)

synch L {

}

...
...

1/2

0

1/2+1/2

(b)

1/2
synch L {

}
1/2

01/2

0 0

... ...

Figure 8.5: Unique thread write patterns.

8.2 Reader-Writer Lock

If multiple threads concurrently execute code that writes to or modifies a resource, then

obviously the resource must be protected with a thread synchronization lock to ensure

that the resource doesn’t get corrupted. However, it is common to have a resource that

is occasionally written to but frequently read from. If multiple threads are concurrently

reading a resource, using a mutual exclusive lock hurts performance significantly because

only one thread at a time is allowed to read from the resource. It’s far more efficient to
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allow all the threads to read the resource simultaneously, and it’s fine to do this if all

of the threads treat the resource as read-only and do not attempt to write to or modify

it.

A reader-writer synchronization lock can and should be used to improve performance

and scalability. A reader-writer lock ensures that only one thread can write to a resource

at any one time and it allows multiple threads to read from a resource simultaneously

as long as no thread is writing at the same time.

We use synch some e do e to express a reader lock synchronization, while keeping

the original one as the writer lock synchronization. Figure 8.9 shows an example using

this syntax. With the reader lock synchronization, multiple get() calls could be in

parallel without blocking.

Our original permission type system allows the synchronization to have some choices.

• If the lock has already been held, we simply remove the two actions for lock

acquirement and release (see Reentrant);

• If the lock hasn’t been held and it is higher than the surrounding holding lock,

then we acquire the lock as well as updating the surrounding holding lock (see

Synch).

Based on the two choices mentioned above, there are two additional permission

typing rules for the reader lock acquirement in Figure 8.6. The original ones in Figure 5.5

still work for the writer lock acquirement.

In order to acquire a reader lock:

• If the lock has already been held (either reader or writer), we remove the two

actions for lock acquirement and release (see Reentrant-Reader);
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• If the lock hasn’t been held and it is higher than the surrounding holding lock,

then we acquire the reader lock as well as updating the surrounding holding lock

(see Synch-Reader). After acquiring a reader lock ρ, a fractional permission

to access the ρ.Prot is granted. This is similar as before, except the writer lock

acquirement will grant a unit permission.

Reentrant-Reader
∆; Π `ρL

e1 ⇓ ptr(ρ1) a ∆′; Π′

Π′ = ξρ1.Prot→ $0, Π′
1 ∆′; Π′ `ρL

e2 ⇓ ptr(ρ2) a ∆′′; Π′′

∆; Π `ρL
synch some e1 do e2 ⇓ ptr(ρ2) a ∆′′; Π′′

Synch-Reader
∆; Π `ρL

e1 ⇓ ptr(ρ1) a ∆′; Π′

Π′ = ρL < ρ1, Π
′
2 ∆′; ξρ1.Prot→ $0, Π′ `ρ1 e2 ⇓ ptr(ρ2) a ∆′′; ξρ1.Prot→ $0, Π′′

∆; Π `ρL
synch some e1 do e2 ⇓ ptr(ρ2) a ∆′′; Π′′

Figure 8.6: Permission type rules: Reader Lock Synchronization

Accordingly, we may need to add a “requires some lock” or “uses some lock” to

indicate the reader lock is acquired before or after the method entry. Their permis-

sion representation are zrlock.Prot → $0 and (rholding < rlock)?(∅) : (zrlock.Prot → $0)

respectively.

8.3 Volatile

In the current Java memory model [37], a write of a volatile variable in one thread T1

followed by a read in a different thread T2 functions similarly to a monitor in that all

writes to state by T1 before writing the volatile variable are visible to T2 after it reads

the variable. However there is no guarantee that any particular write will be visible

by another thread—no blocking, no atomicity with regard to other state changes. The
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reading thread might read the volatile variable multiple times between writes, or not

at all. Thus it seems that no (linear) permissions can be transmitted through volatile

variables. However, it is entirely possible to transmit non-linear information.

With nesting, it is easy to use linear types in an imperative programming language.

In nesting terms, the fact that a nesting has taken place and that one permission is

available inside another, can be transmitted non-linearly. Then in some other part of

a program where the nester permission is already available, the nested permission can

be recovered. The price to paid is that the nesting fact, once established, cannot be

negated.

The basic idea is to use nesting to model transfer of permission through volatile field

reads and writes. Nesting works invisibly—when a permission Π is nested in a location,

Π is “immediately” transferred to any part of the program has (fractional) access to

that location. However, nesting cannot be put into effect until the knowledge of nesting

is received.

The traditional technique (“standard practice”) for protecting mutable state is to

designate a protecting object for each piece of mutable state (one object may protect

many others) and ensure that all accesses to the state occur dynamically only within a

synchronization on the protecting object. For example, see class Traditional in Fig-

ure 8.8 (the auxiliary code is in Figure 8.7); the bodies of the methods get() and inc()

include synchronizations around the reads and writes of the mutable state respectively.

This approach is safe, but may not be very efficient sometimes, especially when the

get() calls are frequent and we wish to permit them to operate in parallel.

Figure 8.9 also shows how a volatile field can substitute for synchronization. The

reading method can simply access the nodes directly using a volatile field read (and

then traverse the list without synchronization). The incrementing method must be
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careful to copy the structure before modifying it. Furthermore, the entire operation is

synchronized to ensure that two increments are not carried out in parallel. However, it

is legal to interleave the get() and inc() calls since the inc() method never updates

any state the inc() method can see, except for the volatile field.

class Node {
Node next;
Node()
{ next = null; }

Node getNext()
{ next; }

int count()
{ if ( this == null ) then 0;
else { 1 + next.count(); } }

Node copy()
{ if ( this == null ) then null;
else new Node( next.copy() ); }

void add1()
{ this.nap( new Node() ); }

Node nap( Node n )
{ if ( this == null ) then n;
else { next = next.nap(n); this; }; }

}

Figure 8.7: A Node class definition

class Race {
Node nodes;
Race() { }
int get()
{ nodes.count(); }
void inc()
{ nodes = nodes.add1(); }

}

class Traditional {
Node nodes;
Traditional() { }
int get()
{ synch this do nodes.count(); }

void inc()
{ synch this do

nodes = nodes.add1(); }
}

Figure 8.8: Two classes with unprotected and protected field respectively.

The usage of volatile field challenges our permission system since calling the get()

and inc() of a same UsingVolatile receiver in parallel is considered safe (race-free).

The thread that makes the get() calls should at least have some fractional permission

to access the nodes field, but its parallel thread that calls the inc() needs to have a

whole unit permission inside of the synchronized block. Even with the new introduced

“write guarded by” annotation, this is still impossible.
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class ReaderWriter {
Node nodes;
ReaderWriter() { }
int get()
{ synch some (this) do

nodes.count(); }

void inc()
{ synch this do

nodes = nodes.add1(); }
}

class UsingVolatile {
volatile Node nodes;
UsingVolatile() { }
int get()
{ nodes.count(); }

void inc()
{ synch this do

nodes = nodes.copy().add1(); }
}

Figure 8.9: Two approaches to protect state.

The permission system needs to be extended to have the ability that allows the

volatile field to be able to read and synchronized write in parallel. And this ability only

applies to the volatile fields. A promising way is to make some permission “shared”, such

that they are duplicated at the thread spawn and go to different threads simultaneously.

We may add a permission syntax Ωn(Π) to show the shared permission based on Π where

the n is the depth of the sharing. Figure 8.10 demonstrates a process that how does a

permission become to shared at a thread spawn. Any permission could be shared, such

...
...

...
...

...
...

)(ΠΩ

Π

)(ΠΩ

)(2 ΠΩ )(2 ΠΩ

Figure 8.10: Fractional Permission.

that

Tr-Shared1

Π ≡ Ω0(Π)

Tr-Shared1

Ωn(Π) ; Ωn+1(Π), Ωn+1(Π)

For any read and write to a regular field, the permission checking keeps unchanged.

But for the read and write to a volatile field, there should be some new rules :
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ReadV
∆; Π `ρL

e ⇓ ptr(ρ) a ∆′; Π′

Π′ = Ωn(ξ∃r.(ρ.f → r, Γ)), Π′′ ρ 6= r r′ 6∈ ∆ f ∈ Fv

∆; Π `ρL
e.f ⇓ ptr(r′) a {r′} ∪∆′; [r 7→ r′]Γ, Π′

WriteV
∆; Π `` e1 ⇓ ptr(ρ1) a ∆′; Π′

ρL
e2 ⇓ ptr(ρ2) a ∆′′; Π′′

Ψ = ∃r.(ρ1.f → r, Γ) ρ1 6= r
Π′′ = Ωn1(q1Ψ), ..., Ωnm(qmΨ), [r 7→ ρ2]Γ, Π′′′ q1 + ... + qm = 1 f ∈ Fv

∆; Π `ρL
e1.f =e2 ⇓ ptr(ρ2) a ∆′′; Π′′

Figure 8.11: Permission type rules: Read and Write volatile fields

They permit any depth of sharing Ωn(...), including none (n = 0); WriteV allows

several different shared permissions to be combined. The volatile field must have exis-

tential type so that its actual value can be changed without requiring a change in the

shared permission. The (non-linear) information Γ existentially closed along with the

shared permission is duplicated when reading and overwritten when writing.

8.4 Eliminate Reentrant Synchronization

Reentrant locks present the simplest form of unnecessary synchronization [38]. A lock

is reentrant if a synchronization on it is already inside of a synchronized block holding

itself. It is safe to remove the inner synchronization since the outer one has already

guaranteed that no other thread could synchronize on the lock at the same time. The

reentrant lock detection is intuitively supported by our permission system. The permis-

sion checking rule Reentrant copes with this situation. Assuming there is a synchro-

nization on lock ρ, if the input permission includes the unit permission ρ.Prot → $0,

then this ρ is a reentrant lock and the current synchronization could be eliminated.
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Chapter 9

Conclusion

The concurrent programming is becoming a mainstream programming practice, since

it greatly increases the performance not only on multi-core devices, but also on single-

processor machines. However, it also brings non-determinism and requires programmers

to have specific knowledge and discipline.

Multithreaded programs synchronize operations on shared mutable data to ensure

that the operations execute atomically. Failure to correctly synchronize such operations

can lead to data races or deadlocks. Because of the nondeterministic interference among

parallel threads, traditional analysis techniques that built for sequential programs can-

not be easily extended to multithreaded programs.

Boyland [5, 7] introduces a fractional permission system which uses fractions to

distinguish write from read. With fractions, it’s able to show non-interference between

two concurrent computations. Nesting (an extension of adoption [48]) is used to model

state encapsulation and protection mechanism. With nesting, one permission can be

“nested” inside another permission.

This thesis shows how to extend the fractional permissions to annotated programs

using unstructured parallelism and synchronizations. Annotations include uniqueness,

nullity, immutability, method effects and lock protected state etc. Fields are given

annotations indicating how they can be accessed, while method annotations show the

requirements and effects of the method calls. All these high-level annotations will be

translated into a unified low-level permission representation.
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Permissions are granted to permit certain operations in programs. For example, a

read (fractional) permission only allows the read access, while a write (unit) permission

allows both read and write accesses. Each field has its own protection mechanism, such

that any access to that field must satisfy the requirement. This protection relation

is built by permission nesting, since the nested permission is always protected by the

nester permission. To avoid deadlocks, we assign partial order among lock objects and

force the lock acquirements to be an ascending order.

In this thesis, a simple object-oriented language is defined to demonstrate the us-

age of annotations and how they can be translated into permissions. We show the

consistency property between static permissions and runtime state. Combining the op-

erational semantics, permission typing rules with the consistency property, we establish

the progress and preservation theorem for this permission system. Well permission-

typed programs in our system are guaranteed to be free of data races and deadlocks.

Possible future directions for this work include:

• Applying the prototype tool to real Java language with cases studies;

• Adding “write guarded by” annotation which indicates only the write access

needs to be protected by its guard;

• Introducing into the reader-writer lock;

• Operational semantics and permission rules for volatile fields;

• Eliminating unnecessary synchronizations.
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