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Abstract

The problem of finding a collection of curves of minimum total length that meet all the lines

intersecting a given polygon was initiated by Mazurkiewicz in 1916. Such a collection forms

an opaque barrier for the polygon. In 1991 Shermer proposed an exponential-time algorithm

that computes an interior-restricted barrier made of segments for any given convex n-gon. He

conjectured that the barrier found by his algorithm is optimal, however this was refuted recently

by Provan et al. Here we give a Shermer like algorithm that computes an interior polygonal

barrier whose length is at most 1.7168 times the optimal and that runs in O(n) time. As a

byproduct, we also deduce upper and lower bounds on the approximation ratio of Shermer’s

algorithm.
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1 Introduction

The problem of finding small sets that block every line passing through a unit square was

first considered by Mazurkiewicz in 1916 [21]; see also [2, 14]. Let B be a convex body in

the plane. Following Bagemihl [2], a set Γ is an opaque set or a barrier for B, if Γ meets

every line that intersects B. We restrict our attention to barriers consisting of countably

many rectifiable curves. A barrier does not need to be connected; it may consist of one or

more rectifiable arcs and its parts may lie anywhere in the plane, including the exterior of

B [2].

What is the length of the shortest barrier for a given convex body B? In spite of consider-

able efforts, the answer to this question is not known even in the simplest instances, such as

when B is a square, a disk, or an equilateral triangle; see [3], [4, Problem A30], [10], [11], [12],

[13, Section 8.11], [15, Problem 12]. For example, when B is a unit square, the barrier in

Figure 1(right) is conjectured to be optimal; on the other hand, the current best lower bound

on the length of a barrier was only 2 until very recently; the earliest record for this bound

of 2 dates back to Jones in 1964 [16]. For barriers consisting of finitely many straight-line

segments and restricted to lie in a concentric square of side 2, Dumitrescu and Jiang [8]

established the first lower bound greater than 2, namely 2 + 10−12 (and 2 + 10−5 for interior
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barriers). Kawamura et al. [17] recently obtained the first general lower bound (that does

not require finiteness or locality), namely 2.00002, which now holds the current record.
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Figure 1 The first three from the left are barriers for the unit square of lengths 3, 2
√

2 =

2.8284 . . ., and 1 +
√

3 = 2.7320 . . .. Right: The diagonal segment [(1/2, 1/2), (1, 1)] together with

three segments connecting the corners (0, 1), (0, 0), (1, 0) to the point ( 1

2
−

√

3

6
, 1

2
−

√

3

6
) yield a

barrier of length
√

2 +
√

6

2
= 2.6389 . . ..

A barrier blocks any line of sight across the region B or detects any ray that passes

through it. Potential applications are in guarding and surveillance [5]. Some applications

to the optimization of saving and recovery routes can be found in [19, 20]. The problem of

short barriers has attracted researchers for decades. We refer the reader to [7, 9] and the

references therein for many of the earlier results in this area.

Types of barriers. Several variants of the problem have been considered depending on

the types of curves allowed in a barrier: the most restricted are the barriers made of single

continuous arcs, then connected barriers, and lastly, arbitrary (possibly disconnected) bar-

riers. For the unit square, the shortest known barrier in these three categories have lengths

3, 1 +
√

3 = 2.7320 . . . and
√

2 +
√

6
2 = 2.6389 . . ., respectively. They are depicted in Fig-

ure 1. Obviously, disconnected barriers offer the greatest freedom of design. For instance,

Kawohl [18] showed that the barrier in Figure 1(right) is optimal in the class of curves with

at most two components restricted to lie in the square. For the unit disk, the shortest known

barrier consists of three arcs. See also [11, 13].

Barriers can be also classified by their possible locations. In certain instances, it might

be infeasible to construct barriers guarding a specific domain outside the domain, since

that part might be controlled by different owners. An interior barrier of a body B is a

barrier constrained to the interior and the boundary of B. For example, all four barriers for

the unit square illustrated in Figure 1 are interior barriers. By slightly relaxing the interior

constraint, we call a barrier for B, (1+ε)-interior, if it lies in the interior or on the boundary

of B + Dε, the Minkowski sum of B and a disk Dε of radius ε > 0 centered at the origin.

On the other hand, certain instances may prohibit barriers lying in the interior of a

domain. An exterior barrier of B is constrained to exterior and the boundary of B. As an

illustration, the first barrier from the left in Figure 1 is exterior (and since it is contained in

the boundary of the domain, it is interior as well).

Approximations. In the absence of methods for finding optimal barriers, attention has

turned to approximation algorithms. A key fact in establishing a constant approximation

ratio is the following lower bound on the length of a barrier: Every barrier Γ of a convex

body B in the plane satisfies

|Γ| ≥ per(B)

2
, (1)

where per(B) denotes the perimeter of B. The proof of (1) is folklore, based on Cauchy’s

integral formula [9, 12, 16]. It follows that the boundary of B, of length per(B), is always
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a 2-approximation to the optimal barrier, and a 2-approximation to the optimal interior

barrier as well.

Recent work focused on obtaining better approximation ratios. Even though we have so

little control on the shape or length of optimal barriers, barriers whose lengths are relatively

close to optimal can be computed efficiently for a convex polygon P with n vertices. Various

approximation algorithms with a smaller constant ratio (below 1.6) have been obtained

recently [9]:

i. A (possibly disconnected) barrier for P , whose length is at most 1
2 + 2+

√
2

π = 1.5867 . . .

times the optimal, can be computed in O(n) time.

ii. A connected polygonal barrier whose length is at most 1.5716 times the optimal can be

computed in O(n) time.

iii. A single-arc polygonal barrier whose length is at most π+5
π+2 = 1.5834 . . . times the

optimal can be computed in O(n) time.

iv. An optimal interior single-arc barrier can be computed in O(n2) time.

v. An interior connected barrier whose length is at most (1 + ε) times the optimal can be

found in polynomial time.

It is worth noting that none of the above approximations holds for interior barriers,

for two reasons: either (i) the barrier found is not guaranteed to be interior, or (ii) the

approximation ratio is based on a lower bound for a specific class of barriers, different from

that given by (1), or both. In this paper, we present the first nontrivial approximation

algorithm with ratio below 2 for computing an interior barrier for a given convex polygon.

◮ Theorem 1. Given a convex polygon P with n vertices, an interior barrier for P , whose

length is at most 0.8588 per(P ) = 1.7168 per(P )
2 , hence in particular at most 1.7168 times

the optimal, can be computed in O(n) time.

Shermer’s Conjecture. In the late 1980s, Akman [1] soon followed by Dublish [6] had

reported algorithms for computing a minimum interior barrier of a given convex polygon.

Both algorithms were shown to be suboptimal by Shermer [25] in 1991, who proposed a new

exact algorithm. Shermer conjectured that a shortest interior barrier (he calls it an “opaque

forest”) of a given convex polygon P with n vertices can be generated by an instance of the

following procedure:

a. Find a triangulation T of P .

b. Remove zero or more diagonals of T , so that at most one nontriangular interior region U

is formed. Let the edges of U ’s Steiner tree be in the opaque forest.

c. For all triangles of T (other than U , if U is a triangle), let the height of the triangle

(using the edge topologically closest to U as the base) be in the opaque forest.

Equivalently, the algorithm proposed by Shermer is the following: For all possible subsets

of 3 or more vertices of P , compute the convex hull U ⊂ P . For each such U , include the

minimum Steiner tree of U in the barrier Γ and triangulate P \ U in all possible ways. For

each fixed triangulation, include the height of each triangle (using the edge topologically

closest to U as the base) in Γ. Return the shortest interior barrier obtained in this way.

(Note that not all choices of U and the triangulation of P \ U produce an interior barrier.

For example, if the triangulation contains an obtuse triangle with the base incident to the

obtuse angle, then the corresponding height is in the exterior of the triangle and the polygon.

However, the Shermer’s method always produces an interior barrier for U = P .)
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Recently, Provan et al. [23] refuted Shermer’s conjecture with a convex polygon as simple

as a rhombus. Specifically, their example shows that Shermer’s procedure does not always

compute the shortest interior barrier or the shortest unrestricted barrier. In Section 4, we

slightly refine the lower bound for the approximation ratio of Shermer’s algorithm offered

by the example of Provan et al. Moreover, it is easy to replicate this lower bound with

polygons with any number of vertices n ≥ 4.

◮ Theorem 2. There exist convex polygons (e.g., a rhombus) for which Shermer’s algorithm

returns an interior barrier that is at least 1.00769 times longer than the optimal.

It is well-known that the number of triangulations of a convex n-gon is Cn−2, where

Cn = 1
n+1

(

2n
n

)

is the the nth Catalan number, hence the proposed algorithm runs in time

O∗(4n) (the O∗() notation hides polynomial factors). However, it is easy to avoid the

exponential running time while still achieving an approximation ratio well below 2. The

approximation algorithm we will present constructs a barrier by a procedure similar to

Shermer’s, where some steps are relaxed. Moreover, the approximation ratio we derive also

holds for Shermer’s original algorithm.

◮ Corollary 3. The approximation ratio of Shermer’s procedure is at most 1.7168 and at

least 1.00769.

2 Preliminaries

Our main tool is an upper bound on the sum of heights produced by Shermer’s procedure

in a specific triangulation of a convex polygon.

Let P = (p0, p1, . . . , pm) be a convex polygon where the vertices are labeled in coun-

terclockwise order. The fan triangulation of P is obtained by inserting the chords p0pi,

i = 2, . . . , m − 1, as shown in Figure 2.

p0
p1

p2

p3

p4p5

p6

p4

p0
p1

p2

p3

p4p5

p6

p4

Figure 2 Left: A fan triangulation and the corresponding heights. Right: Edge p3p4 is subdivided

by a dummy vertex.

Let hi denote the distance from pi to the supporting line of p0pi−1 for i = 2, . . . , m.

The shortest segments between pi and line p0pi−1 are the heights corresponding to the fan

triangulation. We first give a sufficient condition for the heights to lie in the interior of P .

◮ Lemma 4. Assume that P = (p0, p1, . . . , pm) lies in a half-disk of diameter p0p1. Then

every triangle (p0, pi−1, pi), i = 2, . . . , m, has a right or obtuse angle at pi; consequently the

heights of the fan triangulation of P lie in the interior or on the boundary of P .

Proof. By Thales’ theorem, we have ∠p0pip1 ≥ π/2 for i = 2, . . . , m. Hence ∠p0pipi−1 ≥
∠p0pip1 ≥ π/2, and every triangle (p0, pi−1, pi) has an obtuse or right angle at pi, as

required. ◭
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◮ Lemma 5. Assume that P = (p0, p1, . . . , pm) lies in a half-disk of diameter p0p1. Let

α = ∠p1p0pm < π/2 and A = area(P ). Then
∑m

i=2 hi ≤
√

2αA.

Proof. Put ai = |p0pi|, i = 1, . . . , m, and αi = ∠pi−1p0pi, i = 2, . . . , m. Refer to Figure 2.

Observe that
∑m

i=2 αi = α. We have

m
∑

i=2

hi =

m
∑

i=2

ai sin αi. (2)

Since P is subdivided into (the fan of) m − 1 triangles with common vertex p0, we also

have

m
∑

i=2

ai−1ai sin αi = 2A. (3)

Since P lies in a half-disk of diameter p0p1, we have ai−1 < ai, for i = 2, . . . , m. Con-

sequently

m
∑

i=2

a2
i sin αi ≤ 2A. (4)

By the Cauchy-Schwarz inequality in the first step and by Jensen’s inequality for the sin

function in the second step, (2) and (4) imply that

(

m
∑

i=2

hi

)2

=

(

m
∑

i=2

ai sin αi

)2

≤
(

m
∑

i=2

a2
i sin αi

)(

m
∑

i=2

sin αi

)

≤ (2A)

(

(m − 1) sin
α

m − 1

)

≤ (2A)

(

(m − 1)
α

m − 1

)

= 2αA. (5)

The required inequality follows by taking square roots. ◭

We present an alternative proof for Lemma 5, via an integral formula, which gives a

tighter bound when the points pi lie on an integrable curve.

◮ Lemma 6. Assume that P = (p0, p1, . . . , pm) lies in a half-disk of diameter p0p1, such that

p0 is at the origin, p1 is on the positive x-axis. Let α = ∠p1p0pm < π/2 and A = area(P ).

Parametrize the polygonal arc (p1, . . . , pm) in polar coordinate by (θ, λ(θ)) for θ ∈ [0, α].

Then
∑m

i=2 hi ≤
∫ α

0 λ(θ) dθ ≤
√

2αA.

Proof. Put λi = |p1pi|, i = 2, . . . , m, and θi = ∠p1p0pi, i = 2, . . . , m. Then we have

m
∑

i=2

hi =
m
∑

i=2

λi sin(θi − θi−1) ≤
m
∑

i=2

λi(θi − θi−1). (6)

By Lemma 4, every triangle (p0, pi−1, pi), i = 2, . . . , m, has a right or obtuse angle at

pi. If we successively subdivide an edge pipi+1, i = 1, . . . , m − 1, with dummy vertices (see

Figure 2), then the sum of heights increases. By an infinite refinement of the polygonal arc

(p1, . . . , pm) with dummy vertices, we obtain

m
∑

i=2

λi(θi − θi−1) ≤
∫ α

0

λ(θ) dθ. (7)
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By the Cauchy-Schwarz inequality,

∫ α

0

λ(θ) dθ ≤
(
∫ α

0

dθ

)1/2(∫ α

0

λ2(θ) dθ

)1/2

=
√

α

(
∫ α

0

λ2(θ) dθ

)1/2

. (8)

We have

m
∑

i=2

hi ≤
∫ α

0

λ(β) dβ, 2A =

∫ α

0

λ2(β) dβ, α =

∫ α

0

dβ, (9)

and consequently, (8) yields
∑m

i=2 hi ≤
√

2αA. ◭

3 Proof of Theorem 1

By the classic isoperimetric inequality [26, Exercises 5–8, 7–17] (or see [24]), we have

A ≤ L2

4π
, and L ≤ πD, (10)

where L = per(P ), A = area(P ), and D = diam(P ).

We can assume without loss of generality that P has a horizontal unit diameter pq, and

let Q = abcd be a minimal axis-parallel rectangle (of unit width) containing P . Denote the

height of Q by y ≤ 1; refer to Figure 3.

q

c

s b

B1

C1

d

p

a

r

q

α3

α4

s b

α2 α1

d cr

p

a

Figure 3 Left: eight areas in a rectangle. Right: four angles in a rectangle.

Let r and s be two points of P on the top and bottom sides of Q, respectively. Let αi,

i = 1, 2, 3, 4, denote the smallest acute angles in each of the four right triangles incident to

the vertices of Q: ∆qcr, ∆rdp, ∆pas, ∆sbq. If Bi, Ci, i = 1, 2, 3, 4, are the areas indicated

in the figure, write

Ai = Bi + Ci, i = 1, . . . , 4, and B =

4
∑

i=1

Bi, C =

4
∑

i=1

Ci, so that A =

4
∑

i=1

Ai.

We have area(P ) =
∑4

i=1 Ai = A = B + C. Observe that Ci ≤ Bi, for each i = 1, 2, 3, 4,

hence 2Ci ≤ Bi + Ci = Ai, for each i = 1, 2, 3, 4. Consequently, 2C ≤ A.

Approximation algorithm. Given a convex polygon P with n vertices, consider four

interior barriers Γi, i = 1, 2, 3, 4, defined as follows: Γi consists of the boundary of P in

three “quarters” of Q and the heights of a fan triangulation in the fourth quarter from the
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smallest angle made at the two endpoints of the convex chain. The algorithm outputs the

shortest one.

Note that Γi, i = 1, 2, 3, 4, is a valid interior barrier for P : the boundary of P in three

quarters of Q (say, all quarters but the ith) blocks any line intersecting conv(P )\Ci; and the

fan of heights in Ci is a barrier by Shermer’s argument [25] (this can be shown by an easy

inductive argument). By Lemma 4, all heights in the fan triangulations lie in the interior

or on the boundary of P , so Γi, i = 1, 2, 3, 4, is an interior barrier. For a given polygon P

with n vertices, the four barriers can be computed in O(n) time: indeed, a diameter pair,

an axis-aligned bounding box, the fan triangulations, and the heights can all be computed

in O(n) time.

First bound on the approximation ratio. In the i-th quarter of Q, the smallest angle

made at the two endpoints of the convex chain is at most αi, for i = 1, 2, 3, 4. By Lemma 5,

the sum of heights in the fan triangulation in the ith quarter is at most
√

2αiCi. The length

of the interior barrier Γ returned by the algorithm is no more than the average length of the

four candidates:

4|Γ| ≤
4
∑

i=1

|Γi| ≤ 3L +

4
∑

i=1

√

2αiCi. (11)

By the Cauchy-Schwarz inequality we have

4
∑

i=1

√

2αiCi ≤

√

√

√

√

(

4
∑

i=1

αi

)(

2

4
∑

i=1

Ci

)

=
√

Λ · 2C, (12)

where Λ :=
∑4

i=1 αi. Since αi ≤ π/4, for each i = 1, 2, 3, 4, we have Λ =
∑4

i=1 αi ≤ π.

Recall that 2C ≤ A. These two bounds together with the first inequality in (10) yield the

following upper bound on the right hand side of (12):

√
Λ · 2C ≤

√
πA ≤ 1

2
L. (13)

Hence by using (11), (12), and (13), it follows that the approximation ratio ρ is at most

|Γ|
L/2

≤ 3L +
√

Λ · 2C

2L
≤ 3L + 0.5L

2L
= 1.75. (14)

A refined bound on the approximation ratio. We derive sharper bounds on both

factors Λ and 2C that appear in (12).

The first key component is establishing an upper bound on the sum of angles Λ =
∑4

i=1 αi.

◮ Lemma 7. Define the function

f(y) =















1

2
+

arctan y
1−y

π
, y ∈ [0, 1/2],

3

4
+

arctan 2y−1
3−2y

π
, y ∈ [1/2, 1].

Then
∑4

i=1 αi ≤ f(y) π. This inequality is the best possible for all y ∈ (0, 1].

Proof. Observe that f(1/2) = 3/4, and that f(y) is continuous at y = 1/2. Denote by y1, y2

the vertical distances from pq to the top and bottom side of Q, respectively. We can assume
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without loss of generality that y1 ≤ y2. Put x1 = |cr|, x2 = |rd|, x3 = |as|, x4 = |sb|, so that

x1 + x2 = x3 + x4 = 1. Refer to Figure 4. Denote by ℓ the supporting line of pq. We can

assume without loss of generality that |dr| ≤ |rc| and |as| ≤ |sb| (by applying a reflection

above and below the line ℓ, independently). This implies that α1 = ∠crq. We distinguish

two cases depending on whether y2 is larger or smaller than 1/2.

a b

cd

p q

r

s

y1

y2

x1x2

x3 x4

α1

a b

cd

p q

r

s

y − 1

2

1

2

3/2− yy − 1/2

1/2 1/2

π/4

π

4

π

4

π

4

π/4π/4

arctan
2y−1

3−2y

ℓ
ℓ

Figure 4 Left: the setup used in the proof of Lemma 7. Right: the canonical configuration in

Case 1 where y2 ≥ 1/2.

Case 1: y2 ≥ 1/2. We first show that Λ =
∑4

i=1 αi = π/2 + arctan 2y−1
3−2y can be attained.

Consider the configuration in Figure 4, where y1 = x2 = y − 1/2, y2 = x3 − x4 = 1/2,

and x1 = 3/2 − y. We call this the canonical configuration in Case 1. In the canonical

configuration, ∆dpr, ∆asp, and ∆bqs are isosceles right triangles, hence α2 = α3 = α4 = π/4,

and α1 = arctan 2y−1
3−2y .

It is enough to show that the canonical configuration maximizes Λ under the constraint

that y2 ≥ 1/2. Consider an arbitrary configuration with y2 ≥ 1/2. Keeping the bounding box

Q fixed, move the points p, q, r, and s continuously to the canonical configuration such that

α1 + α2 monotonically increases, and α3 + α4 increases overall during the transformation.

Note that αi, i = 1, 2, 3, 4, does not necessarily correspond to the same angle during a

continuous transformation: a change can occur when αi = π/4. However, the value of αi

does change continuously.

Note that α3 + α4 ≤ π/4 + π/4 = π/2. Therefore α3 + α4 is nondecreasing over all, no

matter how we move p, q, r, and s to the canonical configuration. For changes in α1 + α2,

we distinguish two subcases.

Case 1.1: α2 = ∠dpr ≤ π/4. Move r to the right until ∠dpr = ∠drp = π/4. Observe

that both α1 and α2 monotonically increase, hence α1 + α2 also monotonically increases.

Next, move p, q, and r simultaneously such that pq remains horizontal and (d, p, r) remains

an isosceles right triangle until p (hence p and q) reaches their canonical position. Observe

that α1 +α2 monotonically increases. Finally, move s to its canonical position (which affects

neither α1 not α2).

Case 1.2: α2 = ∠drp ≤ π/4. This means that p and q are above their canonical position.

Move p and q down simultaneously such that pq remains horizontal, until either they reach

their canonical position or ∠drp = π/4. In the latter alternative, the proof can be finalized as

in Case 1.1. If p and q are at their canonical position but ∠drp < π/4, then x2 ≤ 1/2 ≤ x1,

and α2 = ∠drp. Move r to the left until r reaches its canonical position. Consider the
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circular arc determined by the three points p, r, q. Since r remains on the left half of cd,

∠prq decreases, and correspondingly α1 + α2 increases. Finally, move s to its canonical

position.

Case 2: y2 ≤ 1/2. (Note that Case 2 covers the entire range of y, both y ≤ 1/2 and

y ≥ 1/2.) We maximize Λ is two steps. First, we assume that the line ℓ is fixed, and

determine optimal positions for r and s. In the second step, we optimize over all positions

of ℓ (subject to the constraint y2 ≥ 1/2).

Specifically, we first prove that

α1 + α2 ≤ π

4
+ arctan

y1

1 − y1
(15)

α3 + α4 ≤ π

4
+ arctan

y2

1 − y2
. (16)

We distinguish two cases depending on whether α2 = ∠dpr or α2 = ∠drp.

Case 2.1: α2 = ∠dpr ≤ π/4. Recall that y1 ≤ y2. In addition, we have x2 ≤ y1 and

1 − y1 ≤ x1. We need to show that

arctan
x2

y1
+ arctan

y1

x1
≤ π

4
+ arctan

y1

1 − y1
.

Similar to Case 1.1, this inequality is obtained by a continuous movement of r to the right

until |dr| = |dp|.
Case 2.2: α2 = ∠drp ≤ π/4. We have y1 ≤ x2 and x1 ≤ 1 − y1. We need to show that

arctan
y1

x2
+ arctan

y1

x1
≤ π

4
+ arctan

y1

1 − y1
.

Similar to Case 1.2, this inequality is obtained by a continuous movement of r to the left

until |dr| = |dp|.
Cases 2.1 and 2.2 together prove inequality (15). The proof of inequality (16) is analogous.

To conclude the analysis of case 2 for y ∈ [0, 1/2], we need to verify that:

(

π

4
+ arctan

y1

1 − y1

)

+

(

π

4
+ arctan

y2

1 − y2

)

≤ π

2
+ arctan

y

1 − y
, or equivalently,

arctan
y1

1 − y1
+ arctan

y2

1 − y2
≤ arctan

y

1 − y
. (17)

Applying the tangent function to both sides of the inequality, it remains to show that

y1

1−y1

+ y2

1−y2

1 − y1

1−y1

y2

1−y2

≤ y

1 − y
, or equivalently,

y − 2y1y2

1 − y
≤ y

1 − y
,

which obviously holds; moreover, we have equality in the limit when y1 → 0 and y2 → y.

To conclude the analysis of case 2 for y ∈ [1/2, 1], we need to check that

(

π

4
+ arctan

y1

1 − y1

)

+

(

π

4
+ arctan

y2

1 − y2

)

≤ 3π

4
+ arctan

2y − 1

3 − 2y
, or equivalently,

arctan
y1

1 − y1
+ arctan

y2

1 − y2
≤ π

4
+ arctan

2y − 1

3 − 2y
. (18)
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Applying the tangent function to both sides of the inequality, it remains to show that

y1

1−y1

+ y2

1−y2

1 − y1

1−y1

y2

1−y2

≤
1 + 2y−1

3−2y

1 − 2y−1
3−2y

, or equivalently,

y − 2y1y2

1 − y
≤ 1

2(1 − y)
.

The last inequality holds since for y1 + y2 = y with the above constraints, the product y1y2

is minimized when y1 = y −1/2 and y2 = 1/2. Moreover, we have equality in the limit when

y1 → y − 1/2 and y2 → 1/2. This completes the analysis of Case 2, and hence the proof of

Lemma 7. ◭

Remark. Note that f(y) is an increasing function of y and f(1) = 1; hence f(y) ≤ 1

for y ∈ [0, 1], with a strict inequality for y < 1. Thus the inequality in Lemma 7 is an

improvement of the inequality Λ ≤ π used earlier in (13).

The second key component is establishing an upper bound on the sum of areas C =
∑4

i=1 Ci.

◮ Lemma 8. Define the function

g(y) = 2 − 2y
π
2 − arccos y + y

√

1 − y2
, y ∈ [0, 1].

Then 2C ≤ g(y) A. This inequality is the best possible for all y ∈ (0, 1].

It is known [26, Exercise 6–10] that convex body B of maximum area, subject to the

constraints that diam(B) = D and the width of B is w, is is the intersection of a disk of

diameter D and a strip of parallel lines at distance w symmetric about the center of the

disk, as shown in Figure 5. Denote by Ψ(r, h) the area of a circular cap of height h in a disk

of radius r. An easy calculation [27] yields

Ψ(r, h) = r2 arccos((r − h)/r) − (r − h)
√

r2 − (r − h)2.

√

r2 − (w/2)2

w

2

r

√

r2 − (h− r)2

arccos
r−h

r

h

r
−
h

r

w

r

r

2
r
a
r
c
s
in

r
−
h

r

Figure 5 A convex body B of maximum area subject to the constraints that diam(B) = 2r and

the width of B is w.



A. Dumitrescu et al. 11

Proof of Lemma 8. Recall that P has unit diameter and is enclosed in between two parallel

lines at distance y. As noted above, this implies that

A ≤ π

4
− 2Ψ

(

1

2
,
1 − y

2

)

=
π

4
− 1

2
arccos y +

y

2

√

1 − y2. (19)

Consequently, by taking into account that C = A − y/2, (19) yields

2C

A
=

2A − y

A
= 2 − y

A
≤ 2y

π
2 − arccos y + y

√

1 − y2
,

as desired. ◭

Remark. Note that g(y) ≤ 1, for y ∈ [0, 1], with a strict inequality for y < 1. Thus the

inequality in Lemma 8 is an improvement of the inequality 2C ≤ A used earlier in (13).

The inequality
√

πA ≤ L/2, from (10), was used in obtaining the approximating ratio of

1.75. The following lemma refines this inequality in terms of y.

◮ Lemma 9. Define the function

τ(y) =
1

4

√

1 − π2(1 − y)2

16(arcsin y +
√

1 − y2)2
, y ∈ [0, 1].

Then
√

πA/(2L) ≤ τ(y). This inequality is the best possible for all y ∈ (0, 1].

Recall [26, Exercise 6–9] that for every convex body K in the plane, a centrally symmetric

convex body K∗ is obtained by the symmetrization K∗ = 1
2 (K − K). It is well known that

K∗ has the same diameter, width and perimeter as K, and that the area of K∗ is greater

than or equal to that of K; moreover, along every direction, the distance between the two

parallel supporting lines of K∗ is the same as that for K. This implies that if K has diameter

2r and width w, then K∗ is contained in a disk or radius r, and in a strip of width w, where

the two parallel lines of the strip are equidistant from the center of the disk; see Figure 5.

Proof of Lemma 9. Let A∗ = area(P ∗) and L∗ = per(P ∗). As noted above, A ≤ A∗ and

L = L∗, hence
√

πA/(2L) ≤
√

πA∗/(2L∗). Therefore, it suffices to prove the lemma for P ∗.

Let P be a centrally symmetric convex body of diameter 1 and width y. Then the

circumradius R of P is 1/2, and its inradius r is at most y/2. Consequently, R−r ≥ (1−y)/2.

Clearly, we have L ∈ [2, π]. As noted above, P is contained in the convex body that is the

intersection of a disk of diameter 1 and a strip of width y, where the two parallel lines of

the strip are equidistant from the disk center (Figure 5). The boundary of this convex body

consists of two circular arcs each of length arcsin y, and two line segments each of length
√

1 − y2, and so its perimeter is 2 arcsin y + 2
√

1 − y2. Consequently, the perimeter L of P

is bounded above as L ≤ 2 arcsin y + 2
√

1 − y2.

It is known [22] that for every planar convex body of area A, circumradius R, inradius r,

and perimeter L, we have the following sharpening of the first inequality in (10):

4πA ≤ L2 − π2(R − r)2.

It follows that

√
πA

2L
≤

√

L2

4 − π2

16 (1 − y)2

2L
=

1

4

√

1 − π2(1 − y)2

4L2
=: δ(L, y).



12 Computing opaque interior barriers à la Shermer

Note that for every fixed y ∈ [0, 1], δ(L, y) is an increasing function in L for L ∈ [2, π].

Recall that L ≤ 2 arcsin y + 2
√

1 − y2 ≤ π for y ∈ [0, 1], and by the monotonicity of δ(L, y)

we get √
πA

2L
≤ 1

4

√

1 − π2(1 − y)2

16(arcsin y +
√

1 − y2)2

for y ∈ [0, 1]; consequently, we have
√

πA/(2L) ≤ τ(y), as claimed. ◭

Remark. Note that τ(y) ≤ 1/4, for y ∈ [0, 1], with a strict inequality for y < 1. Thus the

inequality in Lemma 9 is an improvement of the inequality
√

πA ≤ L/2 used earlier in (13).

We now finalize the proof of the upper bound in Theorem 1. By using the bounds in

Lemmas 7, 8, and 9, we obtain the sharper analogues of (13) and (14):

√
Λ · 2C ≤

√

(f(y) π)(g(y) A) =
√

f(y)g(y)πA (20)

ρ ≤ 3L +
√

Λ · 2C

2L
≤ 3L +

√

f(y)g(y)πA

2L
≤ 1.5 +

√

f(y)g(y) τ(y). (21)

A numerical calculation show that
√

f(y)g(y) τ(y) is maximized to 0.21757 . . . at y =

0.87894 . . . and correspondingly f(y) = 0.92439 . . ., g(y) = 0.82244 . . ., and τ(y) = 0.24952 . . ..

Consequently, ρ ≤ 1.5 + 0.21757 . . . = 1.71757 . . . < 1.7176.

The final bound on the approximation ratio. We refine Lemma 5 using a stronger

condition, namely we assume that the polygon P = (p0, p1, . . . , pm) not only lies in a half-

disk of diameter p0p1, but also in a right triangle with diameter p0p1; refer to Figure 6.

Assume that P = (p0, p1, . . . , pm) lies in a half-disk of diameter p0p1, such that p0 is

at the origin and p1 is on the positive x-axis. Let α = ∠p1p0pm < π/2 and A = area(P ).

Parametrize the polygonal arc (p1, . . . , pm) in polar coordinate by (θ, λ(θ)) for θ ∈ [0, α].

Then
∑m

i=2 hi ≤
∫ α

0
λ(θ) dθ ≤

√
2αA.

Figure 6 The polygon P lies in a right triangle.

◮ Lemma 10. Assume that P = (p0, p1, . . . , pm) is contained in a right triangle ∆p0p1t with

∠p0tp1 = π/2 and ∠tp0p1 = α. Let A = area(P ). Then
∑m

i=2 hi ≤
√

2µ(α)A ≤
√

2αA,

where

µ(α) = ln2

(

1 + sin α

cos α

)

/

tan α.

Proof. Let r be a point on the edge p0t such that the area of the triangle ∆p0p1r is A.

Observe that to extend the lengths λ(θ) of the triangles of angle dθ in the fan by the same

amount, the triangles corresponding to larger values of β require more area. This implies

that, with α, A, and |p0p1| fixed,
∫ α

0
λ(θ) dθ is maximized when P is exactly the triangle
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∆p0p1r. Moreover, with α and A fixed, and with |p0p1| variable,
∫ α

0
λ(θ) dθ is maximized

when ∆p0p1r is a right triangle with angle ∠p0rp1 = π/2.

Put x = |p0p1| in this extreme case. Then λ(θ) = x cos α/ cos θ. In the right triangle

∆p0p1r with ∠p0rp1 = π/2, 2A = |p0r| · |p1r| = x sin α · x cos α. Thus x cos α =
√

2A/ tan α.

By integral calculus, we have

∫ α

0

dθ

cos θ
= ln

(

1 + sin α

cos α

)

.

By Lemma 6 it follows that

m
∑

i=2

hi ≤
∫ α

0

λ(θ) dθ = x cos α

∫ α

0

dθ

cos θ
=
√

2A/ tan α ln

(

1 + sin α

cos α

)

=
√

2µ(α)A.

Moreover, with α and A fixed, (9) holds for λ(θ) = x cos α/ cos θ too. Thus
√

2µ(α)A ≤√
2αA. ◭

The function µ(α) is concave for 0 ≤ α < π/2. By Jensen’s inequality, the constraint
∑4

i=1 αi ≤ f(y)π implies that
∑4

i=1 µ(αi) ≤ 4µ(f(y)π/4). Let f̂(y) = 4µ(f(y)π/4)/π. Then
∑4

i=1 µ(αi) ≤ f̂(y) · π.

Using f̂(y) instead of f(y) in the final analysis, a numerical calculation show that
√

f(y)g(y) τ(y) is maximized to 0.21674 . . . at y = 0.87256 . . . and correspondingly f̂(y) =

0.91364 . . ., g(y) = 0.82615 . . ., and τ(y) = 0.24947 . . .. Consequently, ρ ≤ 1.5+0.21674 . . . =

1.71674 . . . < 1.7168, as claimed. ◭

Remark. Note that for a disk Ω of unit radius, every interior barrier must have length

at least 2π. Indeed, for every point p ∈ ∂Ω, blocking p from the line ℓp tangent to Ω at p

requires that p ∈ Γ. It follows that ∂Ω ⊆ Γ, which in turn yields |Γ| ≥ |∂Ω| = 2π, as claimed.

On the other hand, a length of 2π clearly suffices. In contrast, using a (1+ε)-interior barrier

yields a significant length-reduction, as shown in the following.

◮ Corollary 11. For any ε > 0, the unit disk Ω admits a (1 + ε)-interior barrier of length at

most (π + 2)(1 + ε). In particular, the unit disk Ω admits a (1 + ε)-interior barrier of length

at most 5.1416, provided that ε > 0 is sufficiently small.

Proof. Assume that Ω is centered at the origin. For a given ε > 0, let n be a sufficiently

large even integer such that a regular n-gon Pn inscribed in (1 + ε)Ω contains Ω, and Pn has

a horizontal diameter pq. Consider an interior barrier for Pn that consists of the half of the

perimeter of Pn below the x-axis and the heights of a fan triangulation for the remainder of

Pn above the x-axis.

We use Lemma 6 for bounding the sum of heights, and for this purpose, we parametrize

Pn in polar coordinates with respect to vertex p. Observe that λ(θ) ≤ 2(1 + ε) cos θ, for

θ ∈ [0, π
2 ]. The perimeter of Pn is bounded from above by the corresponding perimeter of

(1 + ε)Ω, and the sum of heights is at most
∫ π/2

0 λ(θ) dθ by Lemma 6. Hence the length of

this barrier is bounded from above by

(1 + ε)π +

∫ π/2

0

2(1 + ε) cos θ dθ = (π + 2)(1 + ε),

which is at most 5.1416 when ε is sufficiently small. ◭
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Figure 7 Two barriers for a rhombus with shorter diagonal of length 2 and with sides of equal

length a ≥ 4. Left: The barrier found by Shermer’s procedure. Right: The barrier found by

Provan et al. [23]. The height from the top vertex to the dashed line in the right barrier is b ≤ 1.

4 A lower bound on the approximation ratio of Shermer’s algorithm

In this section we prove the lower bound given in Theorem 2. Refer to Figure 7.

Let ℓS and ℓP , respectively, be the lengths of the two barriers illustrated on the left and

the right. We have

ℓS = 1 + 2a,

and

ℓP (b) = b + 2a(1 − b) + 2
√

(a2 − 1)b2 + (2 − b)2.

The derivative of ℓP (b) is

ℓ′
P (b) = 1 − 2a +

(a2 − 1) · 2b − 2(2 − b)
√

(a2 − 1)b2 + (2 − b)2
= 1 − 2a +

2a2b − 4√
a2b2 − 4b + 4

.

Setting ℓ′
P (b) = 0 yields

(4a2 − 4a + 1)(a2b2 − 4b + 4) = 4a4b2 − 16a2b + 16,

which simplifies to

a2b2 − 4b − 4(4a2 − 4a − 3)/(4a − 1).

For a ≥ 4, this quadratic equation in b has a unique positive real root

b0 =
4 +

√

16 + 16a2(4a2 − 4a − 3)/(4a − 1)

2a2
=

2 + 2
√

1 + a2(4a2 − 4a − 3)/(4a − 1)

a2
,

and the length ℓP (b) of the barrier of Provan et al. is minimized when b = b0. In particular,

b0 = 1 when a = 4, and b0 < 1 when a > 4.

Assisted by a computer program, we can verify that for a ≥ 4, the ratio ℓS/ℓP (b0) is

maximized to 1.00769 . . . when a = 16.299 . . . (
√

a2 − 1 = 16.268 . . .), and correspondingly

b0 = 0.49053 . . .. ◭

5 Concluding remarks

Observe that when the input is a regular n-gon Pn, our algorithm returns a barrier whose

length is at most 1.5π +
∫ π/2

π/4
cos(θ) dθ = 1.5π + 2 −

√
2 = 1.6845 . . . π. On the other hand

our algorithm attains a ratio at most 1.7176 for every convex polygon. This may indicate

that its analysis is quite tight.

The length of the barrier constructed in Corollary 11 for the regular n-gon Pn is at most

5.1416 = 1.6367 . . . π. We believe that this barrier is not too far from the optimal one. This

may indicate that the algorithm itself is quite good, at least for polygons similar in shape,

fat polygons in particular.

All these estimates however are expressed in terms of the same trivial lower bound (1).

The reader can notice that for polygons P that are long and skinny, the lower bound per(P )/2
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is not too bad. Indeed we indicate below how to modify our algorithm so that it returns an

interior barrier whose length is close to per(P )/2. On the other hand, it is worth pointing

out that the bottleneck in the analysis of our algorithm is for large values of y, namely

y ≈ 0.88. For such values, we believe that the lower bound per(P )/2 in (1) is quite loose.

The conclusion is that further improvement in the approximation ratio of our algorithm for

interior barriers relies on an improved lower bound beyond per(P )/2 for fat polygons (i.e.,

with large y, in our analysis.), and that the case of small y is not too hard to deal with. We

conjecture that the approximation ratio of the following algorithm is below 1.1.

Algorithm. In addition to the four candidate interior barriers Γi, i = 1, 2, 3, 4, defined

earlier, we add two new candidates, Γ+ and Γ−. The barrier Γ+ consists of the boundary

of P below the diameter pq, the height hr from r in ∆rpq, and the two fans of Shermer

heights to the left and to the right of hr, corresponding to the minimum angles in ∆rdp and

∆rcq. The barrier Γ− is defined analogously, by the boundary of P above the diameter pq,

etc. The algorithm returns the shortest of these six barriers.
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