A Problem on Track Runners

Adrian Dumitrescu
Department of Computer Science
University of Wisconsin–Milwaukee
Milwaukee, WI, USA
dumitres@uwm.edu

Csaba D. Tóth
Department of Mathematics
California State University, Northridge
Los Angeles, CA, USA
cdtoth@acm.org

August 28, 2015

Abstract

Consider the unit circle C and a circular arc A of length $\ell = |A| < 1$. It is shown that there exists $k = k(\ell) \in \mathbb{N}$, and a schedule for k runners with k distinct but constant speeds so that at any time $t \geq 0$, at least one of the k runners is not in A.

Keywords: Kronecker’s theorem, rational independence, track runners, multi-agent patrolling, idle time.

1 Introduction

In the classic lonely runners conjecture, introduced by Wills [11] and Cusick [4], k agents run clockwise along a circle of length 1, starting from the same point at time $t = 0$. They have distinct but constant speeds. A runner is called lonely when he/she is at distance of at least $\frac{1}{k}$ from any other runner (along the circle). The conjecture asserts that each runner a_i is lonely at some time $t_i \in (0, \infty)$. The conjecture has only been confirmed for up to $k = 7$ runners [1, 2]. A recent survey [7] lists a few other related problems.

Recently, some problems with similar flavor have appeared in the context of multi-agent patrolling, particularly in some one-dimensional scenarios [3, 5, 6, 9, 10]. Suppose that k mobile agents with (possibly distinct) maximum speeds v_i ($i = 1, \ldots, k$) are in charge of patrolling a closed or open fence (modeled by a circle or a line segment). The movement of the agents over the time interval $[0, \infty)$ is described by a patrolling schedule (or guarding schedule), where the speed of the ith agent, ($i = 1, \ldots, k$), may vary between zero and its maximum value v_i in any of the two directions along the fence. Given a closed or open fence of length ℓ and maximum speeds $v_1, \ldots, v_k > 0$ of k agents, the goal is to find a patrolling schedule that minimizes the idle time, defined as the longest time interval in $[0, \infty)$ during which some point along the fence remains unvisited, taken over all points. Several basic problems are open, such as the following: It is not known how to decide, given $v_1, \ldots, v_k > 0$, and $\ell, \tau > 0$ whether k agents with these maximum speeds can ensure an idle time at most τ when patrolling a segment of length ℓ.

This note is devoted to a question on track runners. In the spirit of the lonely runner conjecture, we posed the following question in [7]:

Assume that k runners $1, 2, \ldots, k$, with distinct but constant speeds, run clockwise along a circle of length 1, starting from arbitrary points. Assume also that a certain half of the circular track (or any other fixed circular arc) is in the shade at all times. Does there exist a time when all runners are in the shade along the track?
Here we answer the question in the negative: the statement does not hold even if the shaded arc almost covers the entire track, e.g., has length 0.999, provided \(k \) is large enough.

Notation and terminology. We parameterize a circle of length \(\ell \) by the interval \([0, \ell]\), where the endpoints of the interval \([0, \ell]\) are identified. A *unit circle* is a circle of unit length \(C = [0, 1] \mod 1 \). A *schedule* of \(k \) agents consists of \(k \) functions \(f_i : [0, \infty) \to [0, \ell] \), for \(i = 1, \ldots, k \), where \(f_i(t) \) mod \(\ell \) is the position of agent \(i \) at time \(t \). Each function \(f_i \) is continuous, piecewise differentiable, and its derivative (speed) is bounded by \(|f_i'(t)| \leq v_i \). A schedule is called *periodic* with period \(T > 0 \) if \(f_i(t) = f_i(t + T) \mod \ell \) for all \(i = 1, \ldots, k \) and \(t \geq 0 \). \(H_n = \sum_{i=1}^{n} 1/i \) denotes the \(n \)th harmonic number; and \(H_0 = 0 \).

2 Track runners in the shade

We first show that the general answer to the problem posed in \([7]\) is negative:

Theorem 1. Consider the unit circle \(C \) and a circular arc \(A \subset C \) of length \(\ell = |A| < 1 \). Then there exists \(k = k(\ell) \in \mathbb{N} \), and a schedule for \(k \) runners with \(k \) distinct constant speeds, so that at any time \(t \geq 0 \), at least one of the \(k \) runners is in the complement \(C \setminus A \).

\[\text{Proof.} \] Set \(v_i = i \) as the speed of agent \(i \), for \(i = 1, \ldots, k \), where \(k = k(\ell) \in \mathbb{N} \) is to be specified later. Assume, as we may, that \(C \setminus A = [0, a] \), for some \(a \in (0, 1) \). Let \(t_0 = 0 \). Since the speed of each agent is an integer multiple of the circle length \(\operatorname{len}(C) = 1 \), the resulting schedule is periodic and the period is 1. To ensure that at any \(t \geq 0 \), at least one agent is in \([0, a]\), it suffices to ensure this covering condition on the time interval \([0, 1]\), i.e., one period of the schedule. All agents start at time \(t = 0 \); however, it is convenient to specify their schedule with their positions at later time.

Agent 1 starts at point 0 at time 0; at time \(a \), its position is at \(a \) (exiting \([0, a]\)). Agent 2 starts at point 0 at time \(a \); at time \(a + a/2 \), its position is at \(a \) (exiting \([0, a]\)). Agent 3 starts at point 0 at time \(a + a/2 \); at time \(a + a/2 + a/3 \), its position is at \(a \) (exiting \([0, a]\)). Subsequent agents are scheduled according to this pattern. For \(i = 1, \ldots, k \), agent \(i \) starts at point 0 at time \(aH_{i-1} \); at time \(aH_i \), its position is at \(a \) (exiting \([0, a]\)). The schedules are given by the functions \(f_i(t) = it - iaH_{i-1} \) for \(i = 1, \ldots, k \).

The construction ensures that

1. agent \(i \) is in \([0, a]\) during the time interval \([t_{i-1}, t_i]\), for \(i = 1, \ldots, k \).
2. \(\bigcup_{i=1}^{k} [t_{i-1}, t_i] \supseteq [0, 1] \).

Indeed, condition 2 is \(aH_k \geq 1 \), or equivalently \(H_k \geq 1/a \). Since \(\ln k \leq H_k \), it suffices to have \(\ln k \geq 1/a \), or \(k \geq \exp(1/a) \), and the theorem is proved. \(\square \)

Now that we have seen that the general answer is negative, it is however interesting to exhibit some scenarios when the result holds.

A set of numbers \(\xi_1, \xi_2, \ldots, \xi_k \) are said to be *rationally independent* if no linear relation

\[a_1\xi_1 + a_2\xi_2 + \cdots + a_k\xi_k = 0, \]

with integer coefficients, not all of which are zero, holds. In particular, if \(\xi_1, \xi_2, \ldots, \xi_k \) are rationally independent, then they are pairwise distinct. Recall now Kronecker’s theorem; see, e.g., \([8, \text{Theorem} 444, \text{p.} 382]\).
Theorem 2. (Kronecker, 1884) If $\xi_1, \xi_2, \ldots, \xi_k \in \mathbb{R}$ are rationally independent, $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ are arbitrary, and T and ε are positive reals, then there is a real number $t > T$, and integers p_1, p_2, \ldots, p_k, such that
\[|t\xi_m - p_m - \alpha_m| \leq \varepsilon \quad (m = 1, 2, \ldots, k). \]

As a corollary, we obtain the following result.

Theorem 3. Assume that k runners $1, 2, \ldots, k$, with constant rationally independent (thus distinct) speeds $\xi_1, \xi_2, \ldots, \xi_k$, run clockwise along a circle of length 1, starting from arbitrary points. For every circular arc $A \subset C$ and for every $T > 0$, there exists $t > T$ such that all runners are in A at time t.

Proof. Assume, as we may, that $A = [0, a]$, for some $a \in (0, 1)$. Let $0 \leq \beta_i < 1$, be the start position of runner i, for $i = 1, 2, \ldots, k$. Set $\alpha_i = a/2 + 1 - \beta_i$, for $i = 1, 2, \ldots, k$, set $\varepsilon = a/3$, and employ Theorem 2 to finish the proof. \qed

Remark. It is interesting to note that Theorem 1 gives a negative answer regardless of how long the shaded arc is, while Theorem 3 gives a positive answer regardless of how short the shaded arc is and for how far in the future one desires.

Observe that if $\xi_1, \xi_2, \ldots, \xi_k$ are rationally independent reals, then at least one ξ_i must be irrational (in fact, all but at most one ξ_i must be irrational). To obtain the conclusion of Theorem 3 neither the condition that the speeds $\xi_1, \xi_2, \ldots, \xi_k$ are rationally independent, nor the condition that at least one ξ_i is irrational are necessary. For instance, a condition imposed on the relative speeds suffices as it is shown in the following.

Theorem 4. Assume that k runners $1, 2, \ldots, k$, with constant but distinct speeds run clockwise along a circle of length 1, starting from arbitrary points. For every circular arc $A \subset C$, there exist suitable distinct speeds $v_1, v_2, \ldots, v_k > 0$, so that for every $T > 0$, there exists $t > T$ such that all runners are in A at time t.

Proof. Assume, as we may, that $A = [0, a]$, for some $a \in (0, 1)$. Let $\beta_1, \beta_2, \ldots, \beta_k$ be the starting points of the runners, where $0 \leq \beta_i < 1$, for $i = 1, 2, \ldots, k$. We proceed by induction on the number of runners k, and with a stronger induction hypothesis extending to every arc A. The base case $k = 1$ is satisfied by setting $v_1 = 1$ for any interval. The subsequent speeds will be set to increasing values, so that $v_1 < v_2 < \cdots < v_k$.

For the induction step, assume that the statement holds for runners $1, 2, \ldots, k - 1$, the arc $A' = [0, a/2]$ and T, and we need to prove it for runners $1, 2, \ldots, k$, the arc $A = [0, a]$ and T. By the induction hypothesis, there exists $t > T$ so that runners $1, 2, \ldots, k - 1$, are in A' at time t. Set $v_k = \frac{2}{a}v_{k-1}$. Observe that runner k will enter the arc A at point 0 before any of the first $k - 1$ runners exits A at point a, regardless of his or her starting point. Hence all k runners will be in A at some time in the interval $[t, t + 1/v_k]$, completing the induction step, and thereby the proof of the theorem. \qed

References

