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Abstract

This column is devoted to non-crossing configurations in the plane realized with straight line
segments connecting pairs of points from a finite ground set. Graph classes of interest realized
in this way include matchings, spanning trees, spanning cycles, and triangulations. We review
some problems and results in this area. At the end we list some open problems.
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1 Non-crossing configurations: setup

We review some problems regarding geometric graphs that are non-crossing. A finite set of points
in the plane is said to be in general position if no three points are collinear. A geometric graph G
is a pair (V,E) where V is a finite set of points (vertices) in the plane in general position, and E is
a set of line segments (edges) between pairs of points in V . A geometric graph G is non-crossing if
its edges have pairwise disjoint (relative) interiors. Note that the abstract graph corresponding to
a non-crossing geometric graph is always planar, but some geometric realizations of a planar graph
may have crossing edges.

2 Extremal combinatorics of non-crossing configurations

Given a set of n points in the plane in general position, every maximal non-crossing configuration
is a triangulation in which the bounded faces are triangles and the outer face is the convex hull
of the point set. Evidently, a non-crossing graph on n points has at most 3n − 6 edges. Every
complete geometric graph on n vertices contains a triangulation, spanning cycle [23] (also known
as polygonization), and a perfect matching (if n is even), each of them non-crossing. However, if a
geometric graph has few edges, one may only find pairwise crossing edges. This leads to a Turán-
type question raised by Erdős, by Avital and Hanani [7], and by Perles and Kupitz [29]: what is
the minimum number of edges in an n-vertex geometric graph that guarantees the existence of a
large non-crossing subgraph (of a certain type)?

Let ek(n) be the smallest number such that any geometric graph with n vertices and m ≥ ek(n)
edges contains a non-crossing matching with k edges, where k ≤ n/2 (Fig. 1, left). It is known that

∗Department of Computer Science, University of Wisconsin–Milwaukee, USA. Email: dumitres@uwm.edu
†Department of Mathematics and Statistics, University of Calgary, Canada; and Department of Computer Science,

Tufts University, Medford, MA. Email: cdtoth@ucalgary.ca

1



ek(n) = Ω(kn) [29] and ek(n) = O(k2n) [42], and it is believed that ek(n) = Θ(kn). A geometric
graph with n vertices and m = Ω(k2n) edges already contains a non-crossing path with k edges [42],
but it is conjectured that m = Ω(kn) edges suffice. This has been confirmed by Perles in the special
case that all n vertices are in convex positions [8, 26]. To find a non-crossing Hamiltonian path
in an n-vertex geometric graph,
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edges suffice. On the other hand, a non-crossing Hamiltonian cycle is guaranteed by only
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edges,
e.g., if the vertices are in convex position.

Better bounds are known for some special cases of dense geometric graphs. Consider the com-
plete k-partite geometric graph G obtained by partitioning n points in the plane into k = O(1) color
classes, and connecting every two points of different colors. If the points are in convex position,
then G contains a non-crossing path of at least n − ℓ edges, where ℓ is the size of a largest color
class [20, 31]. But the best possible bound is not known even if the vertices are in convex position
and all color classes have the same cardinality [1, 30] (Fig. 1, middle). In a Ramsey-type variant,
the edges of a complete geometric graph on n vertices are 2-colored. Then one of the color classes
always contains a non-crossing spanning tree, a non-crossing matching of ⌊n/3⌋ edges [25], and
non-crossing cycles of size 3, 4, . . . , ⌊

√

n/2⌋ [26]. These numbers cannot be improved. One of the
color classes also contains a non-crossing path of Ω(n2/3) edges, which is better than the Ω(

√
n)

bound for dense graphs [42], but falls short of the conjectured Ω(n).

Figure 1: Left: a geometric graph on 13 vertices and a non-crossing path with 10 edges. Middle: a geometric
complete bipartite graph on 16 vertices in convex position, and a non-crossing path with 14 edges. Right: a
set of 16 points in general position, and a non-crossing covering path with 10 segments.

As an application of the upper bound ek(n) = O(k2n) [42], Araujo et al. [4] have shown that
the edge set of every complete geometric graph on n vertices can be partitioned into O(n3/2)
non-crossing matchings (i.e., each composed of pairwise disjoint segments). It is an exciting open
problem to decide whether a linear number of such matchings suffice, as in the case of convex
complete geometric graphs. It should be noted that even the conjectured bound ek(n) = O(kn)
would only give a decomposition into O(n log n) non-crossing matchings [4], thus a new approach
is probably needed.

3 Non-crossing configurations: finding a good one

In most applications of geometric graphs, edge crossings are undesirable. Many structures studied
in computational geometry, such as minimum spanning trees, shortest traveling salesman tours or
Delaunay triangulations, are non-crossing either by definition or by their nature. For structures of
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minimum length, the non-crossing property often comes for free from the triangle inequality. For
example, the shortest matching and the shortest spanning tree on n given points in the plane are
automatically non-crossing and can be computed in polynomial time [18, 32]. For maximization
problems, however, the non-crossing property is in direct conflict with the objective to maximize
the Euclidean length. This interplay makes these problems attractive but also harder to deal with.

Maximization problems for geometric network design under the non-crossing constraint were
first studied by Alon, Rajagopalan and Suri [6]. Given a set of n points in the plane in general
position, the most natural problems are computing a longest non-crossing spanning tree, matching,
Hamiltonian path or cycle, or triangulation.

Graph class Approximation ratio

Perfect matching 2/π ≈ 0.6366 [6]

Spanning tree 0.502 [16]

Hamiltonian path 2/(π + 1) ≈ 0.4829 [16]

Hamiltonian cycle —

Table 1: Classes of non-crossing geometric graphs, current best approximation ratios.

It is suspected (but not known) that these problems are NP-hard. On the other hand,
Alon et al. [6] gave constant-ratio approximations for the first three problems above: specifically,
1/2 for spanning trees, 2/π for matchings, and 1/π for paths. For instance the longest star (out
of the n possible starts centered at one of the n points) is obviously non-crossing and yields a
1

2
-approximation for the longest spanning tree. Some improvements have been obtained in [16].

The current best results are summarized in Table 1. Hamiltonian cycles appear to be the hardest
to approximate and no constant-ratio approximation algorithm is known (see however [16] for some
special cases). Alon et al. [6] mentioned that their techniques can be applied to achieve constant
factor approximations for the longest triangulation and the longest bounded-degree spanning tree.

4 Non-crossing configurations: how many can there be?

Determining the maximum number of non-crossing geometric graphs on n points in the plane is
a fundamental question in combinatorial geometry. Following a common notation, we denote by
pg(P ) the number of non-crossing geometric graphs that can be embedded over a point set P ⊂ R

2,
and by pg(n) = max|P |=n pg(P ) the maximum number of non-crossing graphs an n-element point
set can admit. According to the—by now—classic result due to Ajtai et al. [3], pg(n) = O(cn)
for some constant c > 0. Analogously, the maximum number of triangulations, perfect matchings,
spanning trees, and spanning cycles (i.e., Hamiltonian cycles) over an n-element point set are
denoted by tr(n), pm(n), st(n) and sc(n), respectively.

Various upper and lower bounds for common non-crossing graph classes have been obtained
in [2, 9, 13, 15, 21, 24, 33, 34, 35, 36, 37, 38, 39, 40]. The current record upper and lower bounds
are displayed in Table 2. Comprehensive lists of up-to-date bounds are maintained on the web
by Demaine [11] and Sheffer [41]. For example, pm(n) = O(10.07n) means that any n-point set in
the plane has at most O(10.07n) non-crossing perfect matchings, while pm(n) = Ω∗(3n) means that
there exists some n-point set that admits Ω∗(3n) non-crossing perfect matchings (the O∗ and Ω∗

notation hides factors bounded by rational functions of n).
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Abbrev. Graph class Lower bound Upper bound

pg(n) graphs Ω(41.18n) [2, 21] O(187.53n) [37]

cf(n) cycle-free graphs Ω(12.26n) [15] O(160.55n) [24, 36]

pm(n) perfect matchings Ω∗(3n) [21] O(10.07n) [39]

st(n) spanning trees Ω(12.00n) [15] O(141.7n) [24, 36]

sc(n) spanning cycles Ω(4.64n) [21] O(54.55n) [38]

tr(n) triangulations Ω(8.65n) [15] O(30n) [36]

Table 2: Classes of non-crossing geometric graphs, current best lower and upper bounds.

Less studied are multiplicities of weighted non-crossing geometric graphs, where the weight of a
geometric graph is its Euclidean length. The general question is: how many non-crossing graphs of
a certain type (e.g., matchings) with minimum or maximum length can be realized on an n-point
set in the plane? Table 3 displays some exponential lower bounds for several common types of
weighted geometric graphs. The notation is analogous. Interestingly enough, no upper bounds
better than those for the corresponding unweighted classes are known.

Abbrev. Graph class Lower bound

pm
min

(n) shortest perfect matchings Ω(2n/4) [14]

pm
max

(n) longest perfect matchings Ω(2n/4) [15]

stmin(n) shortest spanning trees Ω(2n/2) [14]

stmax(n) longest spanning trees Ω(2n) [15]

scmin(n) shortest spanning cycles Ω(2n/3) [15]

scmax(n) longest spanning cycles Ω(2n/3) [15]

Table 3: Classes of weighted non-crossing geometric graphs: exponential lower bounds.

5 Non-crossing covering paths and trees

Every set of n points in the plane in general position admits a non-crossing spanning path (hence
also tree) with n−1 edges: take for instance an x-monotone spanning path for the points. However,
if we allow the addition of Steiner points (not necessarily in general position), then a non-crossing
path or tree that contains the initial n points and has fewer than n − 1 edges exists. A covering
path (resp., tree) is a polygonal path (tree) that contains all the given points at vertices or in the
interior of the edges (Fig. 1, right). For n points in general position, every covering path (resp., tree)
requires at least ⌈n/2⌉ segments. A minimum-link covering path (tree) is one with the smallest
number of segments (links).

There are arbitrarily large n-element point sets in general position for which any non-crossing
covering path must have at least 5n/9−O(1) segments [17]. Improving on the trivial upper bound
of n− 1, Gerbner and Keszegh [22] recently showed that every n-point set admits a covering path
(and tree) with at most cn segments, for some positive constant c < 1. Establishing the minimum
number of segments that suffice in a non-crossing covering path for n points in the plane remains
as an open problem.
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Welzl [12] asked what is the maximum integer p(n) such that every set of n points in the plane
contains a subset of size p(n) that admits a covering path with p(n)/2 segments. Such a subset
is called perfect. The current best lower bound, p(n) = Ω(log n), follows from the Erdős-Szekeres
theorem [19], but is quite far from the current (trivial) upper bound p(n) = O(n).

6 Open problems

Interesting questions arise when counting certain types of subgraphs of a given fixed non-crossing
geometric graph. For instance, suppose we have a fixed triangulation of an n-element point set.
Kreveld et al. [28] asked what is the maximum number of convex polygons made up from edges of
the given triangulation. Informally this question reads: How many potatoes are in a mesh? In a
first partial answer they offered lower and upper bounds of Ω(1.5028n) and O(1.6181n), respectively.

Similar questions can be posed about the maximum number of perfect matchings, spanning
trees, or spanning cycles contained in a given triangulation on n points. For instance,
Buchin et al. [9] have shown that any triangulation on n points contains at most 6n/4 perfect
matchings. Partial answers to questions like these have been instrumental in deriving some of
currently best upper bounds [15, 38] mentioned in Section 4.

We conclude with a few open problems:

1. Does there exist a constant c such that every geometric graph on n vertices and at least ckn
edges contains k disjoint edges (i.e., a non-crossing matching with k edges)?

2. Does there exist a constant c > 0 such that every complete geometric graph on n vertices
whose edges are colored by two colors contains a non-crossing monochromatic path of length
cn? The current best lower bound is Ω(n2/3) [25].

3. What is the computational complexity of finding a longest non-crossing perfect matching
(spanning tree, Hamiltonian path, or cycle)? Are these problems NP-hard, as suspected
in [6]?

4. Can one efficiently compute a good approximation of the longest non-crossing Hamiltonian
cycle of n points?

5. Does sc(S) < tr(S) hold for every sufficiently large point set S, as conjectured in [38]?

6. Does there exist a constant c < 1 such that pm(S) = O(cn · tr(S)) for every point set S, as
conjectured in [38]?

7. Is it possible to establish sharper upper bounds on the maximum multiplicity for weighted
geometric graphs (better than those for the corresponding unweighted classes) [15]?

8. How many segments suffice in a non-crossing covering path for n points in the plane?

9. It is known that the minimum-link covering path problem is NP-complete for arbitrary point
sets [5, 27]. Is the problem still NP-complete for points in general position and non-crossing
paths [17]?

10. What is the size of the largest perfect subset that can be selected from any set of n points in
the plane?
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11. How many convex polygons can be made (at most) by using the edges from a fixed triangu-
lation on n points? Can the gap between the bounds Ω(1.5028n) and O(1.6181n) be closed?
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