Homework 2

1. Data structures for disjoint sets

This exercise is about the linked-list representation of disjoint sets with the union-by-size heuristic and the algorithm for computing the connected components of an undirected graph.

(a) During the execution of CONNECTED-COMPONENTS on a graph $G = (V, E)$ with k connected components, where $|V| = n$, $|E| = m$, how many times is FIND-SET called? How many times is UNION called? Express your answers in terms of n, m and k. What are these counts for the graph in the figure?

(b) Let $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$, $C = \{c_1, \ldots, c_n\}$. Deduce a tight asymptotic bound for the time-complexity of CONNECTED-COMPONENTS on the graph $G = (V, E)$, where $V = A \cup B \cup C$ and $E = \bigcup_{i=1}^{n} \{a_ib_i, a_ic_i, b_ic_i\}$.

(c) Deduce a tight asymptotic bound for the time-complexity of CONNECTED-COMPONENTS on a graph $G = (V, E)$, where $|V| = n$, and $|E| = \lfloor 3n^{1.2} \rfloor$.

2. Heaps

Illustrate BUILD-HEAP (constructing a max-heap bottom-up) on the array $A = [5, 3, 17, 10, 24, 19, 6, 22, 9, 50]$ (with $n = 10$). Then illustrate an EXTRACT-MAX operation followed by an INSERT(20) operation on the resulting heap. Specify what operations to fix the heap are performed and show the heap after each such operation.

3. Algorithm design

(a) Develop an algorithm that computes the kth smallest element of a set of n distinct elements in $O(n + k \log n)$ time. (Hint: Use a priority queue in the form of a binary heap.)

(b) Specify the resulting running times for $k = \lfloor \sqrt{n} \rfloor$ and for $k = \lfloor n^{2/3} \rfloor$.

(c) Develop an algorithm that computes the smallest three elements and the largest three elements of a set of $n \geq 6$ distinct elements in $O(n)$ time.
Other suggested exercises (for practice; you do not need to turn in)

4. Heaps Assume that \(a[1..n] \) is an array implementation of a max-heap.

 (b) Let \(b[1..n] \) be the array obtained by reversing \(a[1..n] \). That is, \(b[i] = a[n - i + 1], i = 1, \ldots, n \). Prove or disprove: \(b[1..n] \) represents a min-heap.

 (c) Let \(a[1..n] \) and \(b[1..n] \) represent binary (maximum) heaps. Let \(c[1..n] \) be sum of \(a \) and \(b \) given by \(c[i] = a[i] + b[i], i = 1, \ldots, n \). Does \(c \) represent a binary (maximum) heap? Justify your answer.

5. Postfix notation First convert the following expression in infix form to postfix form using the stack algorithm discussed in class. Then evaluate the resulting expression using a stack. Show the stack contents after each step in both phases.

 \[E = 2 \times (3 + 4) + (5 + 6 \times 2) \times 4 \times 5 \]

6. Recurrences (This exercise is for graduate students.) Use induction to show that the following recurrence solves to \(T(n) = \Theta(n) \). (Hint. See p. 222 of the book for a similar recurrence.)

 \[T(n) = T(\lfloor n/2 \rfloor) + T(\lfloor n/7 \rfloor) + 3n, \quad T(0) = 1. \]