Kerberos: a Session Key Distribution Scheme

For Session Key Distribution Schemes (SKDS), we will assume that there is a network of users with a trusted authority (TA), there is an agreed-upon symmetric key encryption algorithm e, and that each user shares a secret key with the TA that can be used on e. For Alice and Bob, we shall denote their shared secret key with the TA as K_{Alice} and K_{Bob} respectively.

What is an SKDS? Suppose Alice wants to talk to Bob. An SKDS is a protocol that describes how Alice and Bob can obtain a TA-issued session key which they then can use to communicate with each other.

The Needham-Schroeder Scheme

One of the first SKDS was proposed by Needham and Schroeder in 1978. It works as follows:

1. Alice chooses a random number r_A. She sends $ID(Alice)$, $ID(Bob)$ and r_A to the TA.

2. The TA chooses a random session key K. It then computes a two values that contain K. The “ticket” for Bob is

 $$t_{Bob} = e_{K_{Bob}}(K||ID(Alice))$$

 while the value for Alice is

 $$y_1 = e_{K_{Alice}}(r_A||ID(Bob)||K||t_{Bob}).$$

 The TA sends y_1 to Alice.

3. Alice decrypts y_1 using K_{Alice}. She verifies that it yielded the plaintext that is of the form $r_A||ID(Bob)||K||t_{Bob}$. At this point, Alice accepts K. She then sends t_{Bob} to Bob.

4. Bob decrypts t_{Bob} using K_{Bob} to obtain K. Then Bob chooses a random number r_B and computes $y_2 = e_K(r_B)$. He sends y_2 to Alice.

5. Alice decrypts y_2 using the session key K to obtain r_B. She computes $y_3 = e_K(r_B - 1)$ and sends y_3 to Bob.

6. Bob decrypts y_3 using the session key K and verifies that the plaintext is $r_B - 1$. At this point, Bob accepts K.

1Again, our discussion is based on *Cryptography: Theory and Practice*, 3rd Edition by Stinson. Section 9.6 of your book describes Kerberos in detail.
A summary of the main steps:

An attack:
Kerberos

Kerberos is a SKDS scheme that was developed at MIT in the late 1980’s and early 1990’s. It was partly based on the Needham-Schroeder SKDS. In Kerberos, time is incorporated into the protocol to prevent attacks like the one described above. Here is a simplified description of Kerberos, version 5.

1. Alice chooses a random number \(r_A \). She sends ID(Alice), ID(Bob) and \(r_A \) to the TA.

2. The TA chooses a random session key \(K \) and a validity period for \(K \) denoted by \(L \). It computes two values:

\[
 t_{Bob} = e_{K_{Bob}}(K||ID(Alice)||L),
\]

and

\[
 y_1 = e_{K_{Alice}}(r_A||ID(Bob)||K||L).
\]

The TA sends both \(t_{Bob} \) and \(y_1 \) to Alice.

3. Alice decrypts \(y_1 \) using \(K_{Alice} \) and verifies that it yielded a plaintext of the form \(r_A||ID(Bob)||K||L \). Alice then determines the current time, \(time \), and she computes

\[
 y_2 = e_K(ID(Alice)||time).
\]

Finally, Alice sends \(t_{Bob} \) and \(y_2 \) to Bob.

4. Bob decrypts \(t_{Bob} \) using his key \(K_{Bob} \) and verifies that it yielded a plaintext of the form \(K||ID(Alice)||L \). He also decrypts \(y_2 \) using the session key \(K \) to obtain \(time \). He then checks that \(time < L \). At this point, Bob accepts \(K \). Bob then computes

\[
 y_3 = e_K(time + 1)
\]

which he sends to Alice.

5. Alice decrypts \(y_3 \) using the session key \(K \) and verifies that the plaintext is \(time + 1 \). At this point, she accepts \(K \).

Discussion.