2.3 Functions

Definition: Let A and B be sets. A function from A to B, $f : A \rightarrow B$, is a rule or an assignment that assigns each element of A to exactly one element of B.

Examples:

Non-examples:

Definition: Let $f : A \rightarrow B$ be a function.

* We say that A is the *domain* of f and B is the *co-domain* of f.
* Let $a \in A$. If $f(a) = b$ then a is the *pre-image* of b and b is the *image* of a.
* The *range* of f is the set $\{b : f(a) = b \text{ for some } a \in A\}$.

Examples:

Definition: Let $f : A \rightarrow B$ be a function and $S \subseteq A$. The image of S under f is the set $f(S) = \{b : f(s) = b \text{ where } s \in S\}$.

1
Classifying Functions

Definition: A function \(f : A \to B \) is **one-to-one** or **injective** if and only if for all \(x, y \in A \), \(f(x) = f(y) \) implies \(x = y \) (or for all \(x, y \in A \), \(x \neq y \) implies \(f(x) \neq f(y) \)).

Examples:

Definition: A function \(f : A \to B \) is **onto** or **surjective** if and only if for all \(y \in B \), there exists \(x \in A \) so that \(f(x) = y \).

Examples:

Definition: A function \(f \) is a **bijection** if it is both one-to-one and onto.

Exercises: Which functions are one-to-one and/or onto?

I. Picture examples:
II. Descriptions:

1. \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that \(f(x) = |x| \).

2. \(f : \{ x : x \text{ is a UWM student} \} \rightarrow \{ y : 0 \leq y \leq 4 \} \) such that \(f(x) \) is the GPA of \(x \).

3. \(f : \{ x : x \text{ is a VISA card holder} \} \rightarrow \{ y : y \text{ is a 16 digit number} \} \) such that \(f(x) \) is the VISA card number of \(x \).

4. \(f : \{ x : x \in \mathbb{Z}, 0 \leq x \leq 63 \} \rightarrow \{ y : y \text{ is a 0-1 string of length 6} \} \) such that \(f(x) \) is the binary representation of \(x \).
Showing a function is one-to-one, onto, or bijective

Let $f : A \to B$ be a function.

- **To show f is one-to-one:** Argue that for any $x, y \in A$ the implication $f(x) = f(y)$ implies $x = y$ or its contrapositive $x \neq y$ implies $f(x) \neq f(y)$ is true.

- **To show f is onto:** Argue that for each $y \in B$, there is an $x \in A$ so that $f(x) = y$. That is, identify the pre-image of y.

- **To show f is a bijection:** Prove f is one-to-one and onto.

Example: Distributing n identical balls to m distinct boxes.
Theorem 1 Suppose $f : A \to B$ is a function. We can compare the cardinalities of A and B if we know that f is one-to-one, onto, or bijective.

(1) If f is one-to-one, then

(2) If f is onto, then

(3) If f is a bijection then

Inversions and Compositions

Definition: Let $f : A \to B$ be a bijection. The \textit{inverse} of f, f^{-1}, is a function from B to A so that $f^{-1}(b) = a$ if and only if $f(a) = b$.

Example:

\textit{Note:} A bijection is \textit{invertible} because its inverse always exists.
Definition: Let $f_1: A \to B$ and $f_2: B \to C$ be functions. The *composition of f_1 and f_2* is the function $f_2 \circ f_1: A \to C$ where $f_2 \circ f_1(a) = f_2(f_1(a))$.

Example: